{"title":"User Activity And Data Detection For MIMO Uplink C-RAN Using Bayesian Learning","authors":"Anupama Rajoriya, Vidushi Katiyar, Rohit Budhiraja","doi":"10.23919/Eusipco47968.2020.9287867","DOIUrl":null,"url":null,"abstract":"We investigate user activity and data detection problem in a multiple-input multiple-output uplink cloud-radio access network, where the data matrix over a time-frame has overlapped burst sparsity due to sporadic user activity. We exploit this sparsity to recover data by proposing a weighted prior-sparse Bayesian learning algorithm. The proposed algorithm, due to carefully selected prior, captures not only the overlapped burst sparsity across time but also the block sparsity due to multi-user antennas. We also derive hyperparameter updates, and estimate the weight parameters using the support estimated via index-wise log-likelihood ratio test. We numerically demonstrate that the proposed algorithm has much lower bit error rate than the state-of-the-art competing algorithms.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"21 1","pages":"1742-1746"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate user activity and data detection problem in a multiple-input multiple-output uplink cloud-radio access network, where the data matrix over a time-frame has overlapped burst sparsity due to sporadic user activity. We exploit this sparsity to recover data by proposing a weighted prior-sparse Bayesian learning algorithm. The proposed algorithm, due to carefully selected prior, captures not only the overlapped burst sparsity across time but also the block sparsity due to multi-user antennas. We also derive hyperparameter updates, and estimate the weight parameters using the support estimated via index-wise log-likelihood ratio test. We numerically demonstrate that the proposed algorithm has much lower bit error rate than the state-of-the-art competing algorithms.