O. Fiser, M. Helbig, J. Sachs, S. Ley, I. Merunka, J. Vrba
{"title":"Microwave Non-Invasive Temperature Monitoring Using UWB Radar for Cancer Treatment by Hyperthermia","authors":"O. Fiser, M. Helbig, J. Sachs, S. Ley, I. Merunka, J. Vrba","doi":"10.2528/PIER17111609","DOIUrl":null,"url":null,"abstract":"Objective: In this paper we present a study of a novel method to noninvasively monitor temperature during thermotherapy for instance in cancer treatment using M-sequence radar technology. The main objective is to investigate the temperature dependence of reflectivity in UWB radar signal in gelatine phantoms using electrically small antennas. Methods: The phantom was locally heated up, and consequently changes of signal reflectivity were observed. Results: An approximate linear relationship between temperature change and reflectivity variations was formulated. To show the potential of this approach we used an M-sequence MIMO radar system. The system was tested on breast-shape phantom with local heating by circulating water of controlled temperature. Delay and Sum algorithm was implemented for two-dimensional imaging. Significance: The article is a study of temperature measurement using UWB radar system for possible usage in thermotherapy.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"64 1","pages":"1-14"},"PeriodicalIF":6.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER17111609","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 18
Abstract
Objective: In this paper we present a study of a novel method to noninvasively monitor temperature during thermotherapy for instance in cancer treatment using M-sequence radar technology. The main objective is to investigate the temperature dependence of reflectivity in UWB radar signal in gelatine phantoms using electrically small antennas. Methods: The phantom was locally heated up, and consequently changes of signal reflectivity were observed. Results: An approximate linear relationship between temperature change and reflectivity variations was formulated. To show the potential of this approach we used an M-sequence MIMO radar system. The system was tested on breast-shape phantom with local heating by circulating water of controlled temperature. Delay and Sum algorithm was implemented for two-dimensional imaging. Significance: The article is a study of temperature measurement using UWB radar system for possible usage in thermotherapy.
期刊介绍:
Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.