mRNA stability in mammalian cells.

J. Ross
{"title":"mRNA stability in mammalian cells.","authors":"J. Ross","doi":"10.1128/MMBR.59.3.423-450.1995","DOIUrl":null,"url":null,"abstract":"This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end.","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"4 1","pages":"423-50"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1226","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/MMBR.59.3.423-450.1995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1226

Abstract

This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哺乳动物细胞mRNA的稳定性。
本文综述了细胞质mRNA的半衰期是如何调控的以及mRNA的衰减率是如何影响基因表达的。mRNA的稳定性影响着几乎所有生物体的基因表达,从细菌到哺乳动物,并且在mRNA半衰期变化后,特定mRNA的丰度可以波动许多倍,而转录没有任何变化。调控mRNA半衰期的过程反过来又会影响细胞的生长、分化和对环境的反应。主要解决了三个问题。mrna中的哪些序列决定了它们的半衰期?哪些酶能降解mrna ?哪些(反式作用)因子调节mRNA的稳定性,它们是如何起作用的?讨论了以下具体主题:测量真核mRNA稳定性和计算衰变常数的技术,mRNA衰变途径,mRNA酶,与许多mRNA共享序列结合的蛋白质[如poly(A)-和au -rich结合蛋白]和与特定mRNA结合的蛋白质(如c-myc编码区决定性结合蛋白),激素和生长因子等环境因素如何影响mRNA稳定性,以及翻译和mRNA稳定性如何联系在一起。最后对未来的研究方向进行了展望和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proton-dependent multidrug efflux systems. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). The secretory pathway of protists: spatial and functional organization and evolution. T helper cell activation and human retroviral pathogenesis. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1