FPGA-accelerated Monte-Carlo integration using stratified sampling and Brownian bridges

M. D. Jong, V. Sima, K. Bertels, David B. Thomas
{"title":"FPGA-accelerated Monte-Carlo integration using stratified sampling and Brownian bridges","authors":"M. D. Jong, V. Sima, K. Bertels, David B. Thomas","doi":"10.1109/FPT.2014.7082755","DOIUrl":null,"url":null,"abstract":"Monte-Carlo Integration (MCI) is a numerical technique for evaluating integrals which have no closed form solution. Naive MCI randomly samples the integrand at uniformly distributed points. This naive approach converges very slowly. Stratified sampling can be used to concentrate the samples on segments of the integration domain where the integrand has the highest variance. Even with stratified sampling, MCI converges very slowly for multidimensional integrals. In this work, we implement an FPGA-accelerated design for MISER, a widely used adaptive MCI algorithm applying stratified sampling. We show how to eliminate the recursion from MISER and partition the algorithm between CPUs and FPGAs. The CPUs manage the control-heavy stratification strategy, while the FPGA is responsible for sampling the integrand. The integrand is compiled into a deep pipeline on the FPGA, producing one function evaluation per clock cycle. We demonstrate the FPGA-accelerated design by pricing a path dependent financial derivative called an Asian option. To make optimal use of the stratification, we implement a Brownian bridge on the FPGA that produces one entire bridge per clock cycle. The FPGA-accelerated design is up to 880 times faster compared to a software reference using the GSL implementation of MISER. Compared to naive MCI in software, our design even requires up to 3572 times less execution time to achieve the same accuracy.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"40 19 1","pages":"68-75"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Monte-Carlo Integration (MCI) is a numerical technique for evaluating integrals which have no closed form solution. Naive MCI randomly samples the integrand at uniformly distributed points. This naive approach converges very slowly. Stratified sampling can be used to concentrate the samples on segments of the integration domain where the integrand has the highest variance. Even with stratified sampling, MCI converges very slowly for multidimensional integrals. In this work, we implement an FPGA-accelerated design for MISER, a widely used adaptive MCI algorithm applying stratified sampling. We show how to eliminate the recursion from MISER and partition the algorithm between CPUs and FPGAs. The CPUs manage the control-heavy stratification strategy, while the FPGA is responsible for sampling the integrand. The integrand is compiled into a deep pipeline on the FPGA, producing one function evaluation per clock cycle. We demonstrate the FPGA-accelerated design by pricing a path dependent financial derivative called an Asian option. To make optimal use of the stratification, we implement a Brownian bridge on the FPGA that produces one entire bridge per clock cycle. The FPGA-accelerated design is up to 880 times faster compared to a software reference using the GSL implementation of MISER. Compared to naive MCI in software, our design even requires up to 3572 times less execution time to achieve the same accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用分层采样和布朗桥的fpga加速蒙特卡罗积分
蒙特卡罗积分法(MCI)是一种计算无闭形式解的积分的数值方法。朴素MCI对均匀分布的被积点进行随机采样。这种天真的方法收敛得很慢。分层抽样可以用来将样本集中在积分域中被积量方差最大的部分。即使使用分层抽样,MCI对多维积分的收敛速度也很慢。在这项工作中,我们实现了一个fpga加速设计的MISER,一个广泛使用的自适应MCI算法应用分层采样。我们展示了如何消除MISER的递归,并在cpu和fpga之间划分算法。cpu管理重控制的分层策略,而FPGA负责对被积体进行采样。被积件在FPGA上编译成一个深管道,每个时钟周期产生一个函数评估。我们通过对一种称为亚洲期权的依赖于路径的金融衍生品定价来演示fpga加速设计。为了最佳地利用分层,我们在FPGA上实现了一个布朗桥,每个时钟周期产生一个完整的桥。与使用MISER的GSL实现的软件参考相比,fpga加速设计的速度高达880倍。与软件中的原始MCI相比,我们的设计甚至需要多达3572倍的执行时间来达到相同的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the General Chair and Program Co-Chairs Accelerator-in-Switch: A Novel Cooperation Framework for FPGAs and GPUs FPGA Accelerated HPC and Data Analytics Novel Neural Network Applications on New Python Enabled Platforms High-level synthesis - the right side of history
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1