Design Human-Robot Collaborative Lifting Task Using Optimization

Asif Arefeen, Y. Xiang
{"title":"Design Human-Robot Collaborative Lifting Task Using Optimization","authors":"Asif Arefeen, Y. Xiang","doi":"10.1115/detc2021-71818","DOIUrl":null,"url":null,"abstract":"\n In this paper, an optimization-based dynamic modeling method is used for human-robot lifting motion prediction. The three-dimensional (3D) human arm model has 13 degrees of freedom (DOFs) and the 3D robotic arm (Sawyer robotic arm) has 10 DOFs. The human arm and robotic arm are built in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The interactions between human arm and box, and robot and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. The inverse dynamic optimization is used to simulate the lifting motion where the summation of joint torque squares of human arm is minimized subjected to physical and task constraints. The design variables are control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box, and the box grasping forces at each time point. A numerical example is simulated for huma-robot lifting with a 10 Kg box. The human and robotic arms’ joint angle, joint torque, and grasping force profiles are reported. These optimal outputs can be used as references to control the human-robot collaborative lifting task.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-71818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, an optimization-based dynamic modeling method is used for human-robot lifting motion prediction. The three-dimensional (3D) human arm model has 13 degrees of freedom (DOFs) and the 3D robotic arm (Sawyer robotic arm) has 10 DOFs. The human arm and robotic arm are built in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The interactions between human arm and box, and robot and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. The inverse dynamic optimization is used to simulate the lifting motion where the summation of joint torque squares of human arm is minimized subjected to physical and task constraints. The design variables are control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box, and the box grasping forces at each time point. A numerical example is simulated for huma-robot lifting with a 10 Kg box. The human and robotic arms’ joint angle, joint torque, and grasping force profiles are reported. These optimal outputs can be used as references to control the human-robot collaborative lifting task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人机协同起重任务优化设计
本文采用基于优化的动态建模方法进行人机升降运动预测。三维(3D)人体手臂模型具有13个自由度(DOFs),三维机械臂(Sawyer机械臂)具有10个自由度。人的手臂和机械手臂是在Denavit-Hartenberg (DH)表示。此外,将三维箱体建模为具有6个全局自由度的浮基刚体。将人的手臂与箱体、机器人与箱体之间的相互作用建模为一组抓取力,在优化公式中将其作为未知量(设计变量)处理。采用逆动力学优化方法模拟了在物理条件和任务约束下,人体手臂关节力矩平方和最小的升降运动。设计变量为人臂、机械臂和箱体关节角轮廓的三次b样条控制点以及各时间点的箱体抓握力。以人-机器人搬运一个10 Kg的箱子为例进行了数值模拟。报道了人臂和机械臂的关节角、关节力矩和抓握力分布。这些最优输出可作为控制人机协同起重任务的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Bus Factor in Conceptual System Design: Protecting a Design Process Against Major Regional and World Events Exploration of the Digital Innovation Process in the Smart Product-Service System Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton An Algorithm for Partitioning Objects Into a Cube Skeleton and Segmented Shell Covers for Parallelized Additive Manufacturing Neurocognitive Effects of Incentivizing Students to Improve Performance Through Repeat Attempts in Design Settings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1