A GPU implementation of the second order adjoint state theory to quantify the uncertainty on FWI results

S. Abreo, Ana Beatríz Ramírez Silva, Oscar Mauricio Reyes Torres
{"title":"A GPU implementation of the second order adjoint state theory to quantify the uncertainty on FWI results","authors":"S. Abreo, Ana Beatríz Ramírez Silva, Oscar Mauricio Reyes Torres","doi":"10.29047/01225383.86","DOIUrl":null,"url":null,"abstract":"The second order scattering information provided by the Hessian matrix and its inverse plays an important role in both, parametric inversion and uncertainty quantification. On the one hand, for parameter inversion, the Hessian guides the descent direction such that the cost function minimum is reached with less iterations. On the other hand, it provides a posteriori information of the probability distribution of the parameters obtained after full waveform inversion, as a function of the a priori probability distribution information. \nNevertheless, the computational cost of the Hessian matrix represents the main obstacle in the state-of-the-art for practical use of this matrix from synthetic or real data. The second order adjoint state theory provides a strategy to compute the exact Hessian matrix, reducing its computational cost, because every column of the matrix can be obtained by performing two forward and two backward propagations. \nIn this paper, we first describe an approach to compute the exact Hessian matrix for the acoustic wave equation with constant density. We then provide an analysis of the use of the Hessian matrix for uncertainty quantification of the full waveform inversion of the velocity model for a synthetic example, using the 2D acoustic and isotropic wave equation operator in time.","PeriodicalId":10745,"journal":{"name":"CT&F - Ciencia, Tecnología y Futuro","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CT&F - Ciencia, Tecnología y Futuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29047/01225383.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The second order scattering information provided by the Hessian matrix and its inverse plays an important role in both, parametric inversion and uncertainty quantification. On the one hand, for parameter inversion, the Hessian guides the descent direction such that the cost function minimum is reached with less iterations. On the other hand, it provides a posteriori information of the probability distribution of the parameters obtained after full waveform inversion, as a function of the a priori probability distribution information. Nevertheless, the computational cost of the Hessian matrix represents the main obstacle in the state-of-the-art for practical use of this matrix from synthetic or real data. The second order adjoint state theory provides a strategy to compute the exact Hessian matrix, reducing its computational cost, because every column of the matrix can be obtained by performing two forward and two backward propagations. In this paper, we first describe an approach to compute the exact Hessian matrix for the acoustic wave equation with constant density. We then provide an analysis of the use of the Hessian matrix for uncertainty quantification of the full waveform inversion of the velocity model for a synthetic example, using the 2D acoustic and isotropic wave equation operator in time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种二阶伴随状态理论的GPU实现,用于量化FWI结果的不确定性
Hessian矩阵及其逆提供的二阶散射信息在参数反演和不确定性量化中都起着重要的作用。一方面,对于参数反演,Hessian方法引导下降方向,使代价函数以较少的迭代次数达到最小。另一方面,它将全波形反演后得到的参数的概率分布作为先验概率分布信息的函数提供后验信息。然而,Hessian矩阵的计算成本代表了从合成数据或实际数据中实际使用该矩阵的最先进的主要障碍。二阶伴随状态理论提供了一种精确计算Hessian矩阵的策略,减少了它的计算成本,因为矩阵的每一列都可以通过执行两次正向和两次反向传播来获得。本文首先描述了一种计算等密度声波方程精确Hessian矩阵的方法。然后,我们分析了使用Hessian矩阵对速度模型的全波形反演进行不确定性量化的一个综合例子,使用二维声波和各向同性波动方程算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical factors for unconventional hydrocarbon resources development Mass balance of Neogene sediments in the Colombia basin relationship with the evolution of the Magdalena and Cauca River basins Suitability assessment for electricity generation through renewable sources: towards sustainable energy production Bulk rheology characterization of biopolymer solutions and discussions of their potential for enhanced oil recovery applications Comparative analysis of matching pursuit algorithms for Kirchhoff migration on compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1