Jait Purohit, Xuyu Wang, S. Mao, Xiaoyan Sun, Chao Yang
{"title":"Fingerprinting-based Indoor and Outdoor Localization with LoRa and Deep Learning","authors":"Jait Purohit, Xuyu Wang, S. Mao, Xiaoyan Sun, Chao Yang","doi":"10.1109/GLOBECOM42002.2020.9322261","DOIUrl":null,"url":null,"abstract":"This paper aims at predicting accurate outdoor and indoor locations using deep neural networks, for the data collected using the Long-Range Wide-Area Network (LoRaWAN) communication protocol. First, we propose an interpolation aided fingerprinting-based localization system architecture. We propose a deep autoencoder method to effectively deal with the large number of missing samples/outliers caused by the large size and wide coverage of LoRa networks. We also leverage three different deep learning models, i.e., the Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN), for fingerprinting based location regression. The superior localization performance of the proposed system is validated by our experimental study using a publicly available outdoor dataset and an indoor LoRa testbed.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
This paper aims at predicting accurate outdoor and indoor locations using deep neural networks, for the data collected using the Long-Range Wide-Area Network (LoRaWAN) communication protocol. First, we propose an interpolation aided fingerprinting-based localization system architecture. We propose a deep autoencoder method to effectively deal with the large number of missing samples/outliers caused by the large size and wide coverage of LoRa networks. We also leverage three different deep learning models, i.e., the Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN), for fingerprinting based location regression. The superior localization performance of the proposed system is validated by our experimental study using a publicly available outdoor dataset and an indoor LoRa testbed.