Soil Classification Based on Deep Learning Algorithm and Visible Near-Infrared Spectroscopy

IF 1.7 4区 化学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Spectroscopy Pub Date : 2021-09-03 DOI:10.1155/2021/1508267
Xueying Li, Pingping Fan, Zongmin Li, Guangyuan Chen, Huimin Qiu, G. Hou
{"title":"Soil Classification Based on Deep Learning Algorithm and Visible Near-Infrared Spectroscopy","authors":"Xueying Li, Pingping Fan, Zongmin Li, Guangyuan Chen, Huimin Qiu, G. Hou","doi":"10.1155/2021/1508267","DOIUrl":null,"url":null,"abstract":"Changes in land cover will cause the changes in the climate and environmental characteristics, which has an important influence on the social economy and ecosystem. The main form of land cover is different types of soil. Compared with traditional methods, visible and near-infrared spectroscopy technology can classify different types of soil rapidly, effectively, and nondestructively. Based on the visible near-infrared spectroscopy technology, this paper takes the soil of six different land cover types in Qingdao, China orchards, woodlands, tea plantations, farmlands, bare lands, and grasslands as examples and establishes a convolutional neural network classification model. The classification results of different number of training samples are analyzed and compared with the support vector machine algorithm. Under the condition that Kennard–Stone algorithm divides the calibration set, the classification results of six different soil types and single six soil types by convolutional neural network are better than those by the support vector machine. Under the condition of randomly dividing the calibration set according to the proportion of 1/3 and 1/4, the classification results by convolutional neural network are also better. The aim of this study is to analyze the feasibility of land cover classification with small samples by convolutional neural network and, according to the deep learning algorithm, to explore new methods for rapid, nondestructive, and accurate classification of the land cover.","PeriodicalId":17079,"journal":{"name":"Journal of Spectroscopy","volume":"351 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2021/1508267","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 11

Abstract

Changes in land cover will cause the changes in the climate and environmental characteristics, which has an important influence on the social economy and ecosystem. The main form of land cover is different types of soil. Compared with traditional methods, visible and near-infrared spectroscopy technology can classify different types of soil rapidly, effectively, and nondestructively. Based on the visible near-infrared spectroscopy technology, this paper takes the soil of six different land cover types in Qingdao, China orchards, woodlands, tea plantations, farmlands, bare lands, and grasslands as examples and establishes a convolutional neural network classification model. The classification results of different number of training samples are analyzed and compared with the support vector machine algorithm. Under the condition that Kennard–Stone algorithm divides the calibration set, the classification results of six different soil types and single six soil types by convolutional neural network are better than those by the support vector machine. Under the condition of randomly dividing the calibration set according to the proportion of 1/3 and 1/4, the classification results by convolutional neural network are also better. The aim of this study is to analyze the feasibility of land cover classification with small samples by convolutional neural network and, according to the deep learning algorithm, to explore new methods for rapid, nondestructive, and accurate classification of the land cover.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习算法和可见近红外光谱的土壤分类
土地覆被的变化会引起气候环境特征的变化,对社会经济和生态系统产生重要影响。土地覆盖的主要形式是不同类型的土壤。与传统方法相比,可见光和近红外光谱技术可以快速、有效、无损地对不同类型的土壤进行分类。基于可见近红外光谱技术,以中国青岛市果园、林地、茶园、农田、裸地和草地6种不同土地覆被类型土壤为例,建立了卷积神经网络分类模型。分析了不同数量训练样本的分类结果,并与支持向量机算法进行了比较。在Kennard-Stone算法划分校准集的条件下,卷积神经网络对6种不同土壤类型和单一6种土壤类型的分类结果优于支持向量机。在按1/3和1/4的比例随机划分标定集的情况下,卷积神经网络的分类效果也更好。本研究旨在分析基于卷积神经网络的小样本土地覆盖分类的可行性,并根据深度学习算法,探索快速、无损、准确的土地覆盖分类新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Spectroscopy
Journal of Spectroscopy BIOCHEMICAL RESEARCH METHODS-SPECTROSCOPY
CiteScore
3.00
自引率
0.00%
发文量
37
审稿时长
15 weeks
期刊介绍: Journal of Spectroscopy (formerly titled Spectroscopy: An International Journal) is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of spectroscopy.
期刊最新文献
Design and Application of a Liquid Detection Device Based on Transmission Near-Infrared Spectroscopic Imaging Feature Variable Selection Based on VIS-NIR Spectra and Soil Moisture Content Prediction Model Construction Soybean Saponin Content Detection Based on Spectral and Image Information Combination Nano-Scale Secondary Ion Mass Spectrometry: A Paradigm Shift in Soil Science Rapid Quality Assessment of Polygoni Multiflori Radix Based on Near-Infrared Spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1