A practical approach to HFI based sensorless control of PM-assisted synchronous reluctance machines applied to EVs and HEVs

E. Trancho, E. Ibarra, A. Arias, I. Kortabarria, P. Prieto
{"title":"A practical approach to HFI based sensorless control of PM-assisted synchronous reluctance machines applied to EVs and HEVs","authors":"E. Trancho, E. Ibarra, A. Arias, I. Kortabarria, P. Prieto","doi":"10.1109/IECON.2017.8216294","DOIUrl":null,"url":null,"abstract":"Sensorless control is a promising alternative for controlling Electric Vehicle (EV) and Hybrid Electric Vehicle (HEV) propulsion systems without the need of complex devices, such as resolvers or encoders. As the usage of a physical sensor is avoided, this allows significant cost reductions of the drive, and the reliability of the system is also improved. EVs require an operation range from standstill to high speeds. At low speeds, the back-EMF of the electric machine is low, and signal injection techniques are required in order to estimate the position and speed of the machine. This paper presents practical implementation details of the High Frequency Injection (HFI) technique, giving special attention to signal processing, offset compensation due to filtering delays and robust speed estimation. The approach is validated in an automotive Permanent Magnet Assisted Synchronous Reluctance Machine (PM-assisted SynRM) of 51 kW.","PeriodicalId":13098,"journal":{"name":"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society","volume":"45 1","pages":"1735-1740"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2017.8216294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Sensorless control is a promising alternative for controlling Electric Vehicle (EV) and Hybrid Electric Vehicle (HEV) propulsion systems without the need of complex devices, such as resolvers or encoders. As the usage of a physical sensor is avoided, this allows significant cost reductions of the drive, and the reliability of the system is also improved. EVs require an operation range from standstill to high speeds. At low speeds, the back-EMF of the electric machine is low, and signal injection techniques are required in order to estimate the position and speed of the machine. This paper presents practical implementation details of the High Frequency Injection (HFI) technique, giving special attention to signal processing, offset compensation due to filtering delays and robust speed estimation. The approach is validated in an automotive Permanent Magnet Assisted Synchronous Reluctance Machine (PM-assisted SynRM) of 51 kW.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动汽车和混合动力汽车用永磁同步磁阻电机无传感器控制的实用方法
无传感器控制是控制电动汽车(EV)和混合动力汽车(HEV)推进系统的一种很有前途的替代方案,无需复杂的设备,如解析器或编码器。由于避免了物理传感器的使用,这使得驱动器的成本显著降低,系统的可靠性也得到了提高。电动汽车需要从静止到高速的运行范围。在低速时,电机的反电动势很低,需要信号注入技术来估计机器的位置和速度。本文介绍了高频注入(HFI)技术的实际实现细节,特别关注信号处理,滤波延迟的偏移补偿和鲁棒速度估计。该方法在51 kW的汽车永磁辅助同步磁阻电机(PM-assisted SynRM)上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the influence of train operation diagram adjustment on the working state and life of IGBT module of traction converter Real-time pothole detection system on vehicle using improved YOLOv5 in Malaysia an Interval Multiple Models Approach for Uncertain Nonlinear Systems Estimation Enhancement of DC MCB Performance using Power Semiconductor Devices Blended Learning for Remote Software Simulation Laboratory of a Solar Power System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1