Graphene Field-Effect Transistor Based High-Performance Wireless Portable Device for H1N1 Detection

IF 1.2 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Applied Science and Convergence Technology Pub Date : 2021-07-30 DOI:10.5757/asct.2021.30.4.111
Kyung Ho Kim, Jaieun An, Jun-Seob Kim, Joonwon Bae, Oh Seok Kwon
{"title":"Graphene Field-Effect Transistor Based High-Performance Wireless Portable Device for H1N1 Detection","authors":"Kyung Ho Kim, Jaieun An, Jun-Seob Kim, Joonwon Bae, Oh Seok Kwon","doi":"10.5757/asct.2021.30.4.111","DOIUrl":null,"url":null,"abstract":"In this study, a convenient high-performance portable sensor platform for simple, fast, and efficient detection of H1N1 virus is demonstrated using a graphene-based transistor type architecture. A uniform graphene layer was generated and patterned by conventional methods such as lithography and vapor deposition, subsequently, electrodes were introduced on the patterned graphene layer to obtain transistor type sensor geometry. Then, the graphene surface was functionalized with antibody for H1N1 virus detection and sensor performance test. The transition curve, linearity, and sensitivity (10 pfu/mL) of the sensor component were measured. In addition, the portable H1N1 diagnosis platform for simple, fast, and convenient virus detection was produced and demonstrated. Consequently, the sensor performance was maintained in the portable sensor platform compared with the graphene-based sensor component. This presented portable H1N1 diagnosis platform showed better performance than the lateral flow assay.","PeriodicalId":8223,"journal":{"name":"Applied Science and Convergence Technology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Convergence Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5757/asct.2021.30.4.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, a convenient high-performance portable sensor platform for simple, fast, and efficient detection of H1N1 virus is demonstrated using a graphene-based transistor type architecture. A uniform graphene layer was generated and patterned by conventional methods such as lithography and vapor deposition, subsequently, electrodes were introduced on the patterned graphene layer to obtain transistor type sensor geometry. Then, the graphene surface was functionalized with antibody for H1N1 virus detection and sensor performance test. The transition curve, linearity, and sensitivity (10 pfu/mL) of the sensor component were measured. In addition, the portable H1N1 diagnosis platform for simple, fast, and convenient virus detection was produced and demonstrated. Consequently, the sensor performance was maintained in the portable sensor platform compared with the graphene-based sensor component. This presented portable H1N1 diagnosis platform showed better performance than the lateral flow assay.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于石墨烯场效应晶体管的H1N1检测高性能无线便携设备
在这项研究中,我们展示了一种方便的高性能便携式传感器平台,用于简单、快速、高效地检测H1N1病毒,该平台采用基于石墨烯的晶体管型架构。通过光刻和气相沉积等传统方法生成均匀的石墨烯层并进行图像化,随后在图像化的石墨烯层上引入电极以获得晶体管型传感器的几何形状。然后,用抗体对石墨烯表面进行功能化,用于H1N1病毒检测和传感器性能测试。测量传感器组分的过渡曲线、线性度和灵敏度(10 pfu/mL)。制作并演示了简易、快速、方便的便携式H1N1病毒检测平台。因此,与基于石墨烯的传感器组件相比,在便携式传感器平台上保持了传感器的性能。该便携式H1N1诊断平台的性能优于侧流法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
27
期刊最新文献
Etch Damage of SiOC Thin Films in an Inductively Coupled Plasma Using Low-Frequency Effect of δ-CsPbI3 Phase Separation in CsxFA1−xPbI3 under Ambient Conditions Review of Generative Models for the Inverse Design of Nanophotonic Metasurfaces Influence of Sputtering Pressure on the Conductivity and Transparency of Aluminum-Doped Zinc Oxide Films Facile Fabrication of Flexible Photosensors Using Zinc Oxide Tetrapods and Their Ultraviolet Response Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1