The Diagnosis of Diabetes Mellitus with Boosting Methods

Hilal Koçak, Gürcan Çetin
{"title":"The Diagnosis of Diabetes Mellitus with Boosting Methods","authors":"Hilal Koçak, Gürcan Çetin","doi":"10.31202/ecjse.1242207","DOIUrl":null,"url":null,"abstract":"In addition to the damage it can cause to various organs, diabetes mellitus (DM) also increases a person's risk of developing other serious health conditions. These can include heart disease, stroke, and nerve damage. Furthermore, DM is a leading cause of blindness and kidney failure. However, with proper management and treatment, many of the complications of DM can be prevented or delayed. Thus, early detection and treatment of DM are crucial. With the advancement of machine learning technology, new opportunities have emerged in the field of medicine. Many disease detection research rely on machine learning techniques, with a particular emphasis on boosting algorithms. Boosting algorithms are used to improve the accuracy of predictions made by other weak models such as decision trees. Using knowledge discovery methods, boosting algorithms are examined and compared on a diabetes dataset in this study. The performance of the boosting algorithms is evaluated by generating ROC curves and comparing average accuracy values. When the study's results were evaluated in terms of precision, Gradient Boosting, AdaBoost, CatBoost, LightGBM, and XGBoost algorithms gives success rates of %85, %83, %88, %86, and %87, respectively.","PeriodicalId":11622,"journal":{"name":"El-Cezeri Fen ve Mühendislik Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"El-Cezeri Fen ve Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31202/ecjse.1242207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In addition to the damage it can cause to various organs, diabetes mellitus (DM) also increases a person's risk of developing other serious health conditions. These can include heart disease, stroke, and nerve damage. Furthermore, DM is a leading cause of blindness and kidney failure. However, with proper management and treatment, many of the complications of DM can be prevented or delayed. Thus, early detection and treatment of DM are crucial. With the advancement of machine learning technology, new opportunities have emerged in the field of medicine. Many disease detection research rely on machine learning techniques, with a particular emphasis on boosting algorithms. Boosting algorithms are used to improve the accuracy of predictions made by other weak models such as decision trees. Using knowledge discovery methods, boosting algorithms are examined and compared on a diabetes dataset in this study. The performance of the boosting algorithms is evaluated by generating ROC curves and comparing average accuracy values. When the study's results were evaluated in terms of precision, Gradient Boosting, AdaBoost, CatBoost, LightGBM, and XGBoost algorithms gives success rates of %85, %83, %88, %86, and %87, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
促进法对糖尿病的诊断
除了对各种器官造成损害外,糖尿病(DM)还会增加一个人患上其他严重健康状况的风险。这些疾病包括心脏病、中风和神经损伤。此外,糖尿病是失明和肾衰竭的主要原因。然而,通过适当的管理和治疗,可以预防或延迟糖尿病的许多并发症。因此,早期发现和治疗糖尿病是至关重要的。随着机器学习技术的进步,医学领域出现了新的机遇。许多疾病检测研究依赖于机器学习技术,特别强调提高算法。增强算法用于提高其他弱模型(如决策树)所做预测的准确性。本研究使用知识发现方法,在糖尿病数据集上对增强算法进行了检验和比较。通过生成ROC曲线和比较平均精度值来评价增强算法的性能。当研究结果在精度方面进行评估时,Gradient Boosting、AdaBoost、CatBoost、LightGBM和XGBoost算法的成功率分别为% 85%、% 83%、% 88%、%86和%87。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human Robot Interaction with Social Humanoid Robots A Single Source Thirteen Level Switched Capacitor Boost Inverter for PV applications Yakınsak-Konik Nozulların Giriş ve Çıkış Çaplarının İtme Kuvveti ve Hacimsel Debi Üzerindeki Etkisinin Teorik, Nümerik ve Deneysel İncelemesi Zeytinyağı Üretim Atıklarının Yün Boyamacılığında Kullanım Olanaklarının Araştırılması Yer Tepki Analizlerinde Farklı Dinamik Kayma Modülü Yaklaşımları Kullanılarak Belirlenen Tepki Spektrumlarının Karşılaştırılması
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1