{"title":"Multi-view semantic temporal video segmentation","authors":"T. Theodoridis, A. Tefas, I. Pitas","doi":"10.1109/ICIP.2016.7533100","DOIUrl":null,"url":null,"abstract":"In this work, we propose a multi-view temporal video segmentation approach that employs a Gaussian scoring process for determining the best segmentation positions. By exploiting the semantic action information that the dense trajectories video description offers, this method can detect intra-shot actions as well, unlike shot boundary detection approaches. We compare the temporal segmentation results of the proposed method to both single-view and multi-view methods, and also compare the action recognition results obtained on ground truth video segments to the ones obtained on the proposed multi-view segments, on the IMPART multi-view action data set.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"25 1","pages":"3947-3951"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7533100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this work, we propose a multi-view temporal video segmentation approach that employs a Gaussian scoring process for determining the best segmentation positions. By exploiting the semantic action information that the dense trajectories video description offers, this method can detect intra-shot actions as well, unlike shot boundary detection approaches. We compare the temporal segmentation results of the proposed method to both single-view and multi-view methods, and also compare the action recognition results obtained on ground truth video segments to the ones obtained on the proposed multi-view segments, on the IMPART multi-view action data set.