{"title":"Automated detection of COVID-19 coronavirus infection based on analysis of chest X-ray images by deep learning methods","authors":"Evgenii Yu. Shchetinin, L. A. Sevastyanov","doi":"10.17223/19988605/58/9","DOIUrl":null,"url":null,"abstract":"Early detection of COVID-19 infected patients is essential to ensure adequate treatment and reduce the load on the healthcare systems. One of effective methods for detecting COVID-19 is deep learning models of chest X-ray images. They can detect the changes caused by COVID-19 even in asymptomatic patients, so they have great potential as auxiliary systems for diagnostics or screening tools. This paper proposed a methodology consisting of the stage of pre-processing of X-ray images, augmentation and classification using deep convolutional neural networksXception, InceptionResNetV2, MobileNetV2, DenseNet121, ResNet50 and VGG16, previously trained on thelmageNet dataset. Next, they fine-tuned and trained on prepared data set of chest X-rays images. The results of computer experiments showed that theVGG16 model with fine tuning of the parameters demonstrated the best performance in the classification of COVID-19 with accuracy 99,09%, recall=98,318%, precision=99,08% and f1_score=98,78. This signifies the performance of proposed fine-tuned deep learning models for COVID-19 detection on chest X-ray images.","PeriodicalId":42063,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Upravlenie Vychislitelnaja Tehnika i Informatika-Tomsk State University Journal of Control and Computer Science","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Upravlenie Vychislitelnaja Tehnika i Informatika-Tomsk State University Journal of Control and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988605/58/9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Early detection of COVID-19 infected patients is essential to ensure adequate treatment and reduce the load on the healthcare systems. One of effective methods for detecting COVID-19 is deep learning models of chest X-ray images. They can detect the changes caused by COVID-19 even in asymptomatic patients, so they have great potential as auxiliary systems for diagnostics or screening tools. This paper proposed a methodology consisting of the stage of pre-processing of X-ray images, augmentation and classification using deep convolutional neural networksXception, InceptionResNetV2, MobileNetV2, DenseNet121, ResNet50 and VGG16, previously trained on thelmageNet dataset. Next, they fine-tuned and trained on prepared data set of chest X-rays images. The results of computer experiments showed that theVGG16 model with fine tuning of the parameters demonstrated the best performance in the classification of COVID-19 with accuracy 99,09%, recall=98,318%, precision=99,08% and f1_score=98,78. This signifies the performance of proposed fine-tuned deep learning models for COVID-19 detection on chest X-ray images.