Jiangtao Wang, Longlong Qian, Songwei Wang, Li Shi, Zhizhong Wang
{"title":"Directional Preference in Avian Midbrain Saliency Computing Nucleus Reflects a Well-Designed Receptive Field Structure.","authors":"Jiangtao Wang, Longlong Qian, Songwei Wang, Li Shi, Zhizhong Wang","doi":"10.3390/ani12091143","DOIUrl":null,"url":null,"abstract":"<p><p>Neurons responding sensitively to motions in several rather than all directions have been identified in many sensory systems. Although this directional preference has been demonstrated by previous studies to exist in the isthmi pars magnocellularis (Imc) of pigeon (<i>Columba livia</i>), which plays a key role in the midbrain saliency computing network, the dynamic response characteristics and the physiological basis underlying this phenomenon are unclear. Herein, dots moving in 16 directions and a biologically plausible computational model were used. We found that pigeon Imc's significant responses for objects moving in preferred directions benefit the long response duration and high instantaneous firing rate. Furthermore, the receptive field structures predicted by a computational model, which captures the actual directional tuning curves, agree with the real data collected from population Imc units. These results suggested that directional preference in Imc may be internally prebuilt by elongating the vertical axis of the receptive field, making predators attack from the dorsal-ventral direction and conspecifics flying away in the ventral-dorsal direction, more salient for avians, which is of great ecological and physiological significance for survival.</p>","PeriodicalId":48560,"journal":{"name":"Journal of Gemmology","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gemmology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani12091143","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurons responding sensitively to motions in several rather than all directions have been identified in many sensory systems. Although this directional preference has been demonstrated by previous studies to exist in the isthmi pars magnocellularis (Imc) of pigeon (Columba livia), which plays a key role in the midbrain saliency computing network, the dynamic response characteristics and the physiological basis underlying this phenomenon are unclear. Herein, dots moving in 16 directions and a biologically plausible computational model were used. We found that pigeon Imc's significant responses for objects moving in preferred directions benefit the long response duration and high instantaneous firing rate. Furthermore, the receptive field structures predicted by a computational model, which captures the actual directional tuning curves, agree with the real data collected from population Imc units. These results suggested that directional preference in Imc may be internally prebuilt by elongating the vertical axis of the receptive field, making predators attack from the dorsal-ventral direction and conspecifics flying away in the ventral-dorsal direction, more salient for avians, which is of great ecological and physiological significance for survival.
期刊介绍:
A leader in its field, The Journal of Gemmology publishes original research articles on all aspects of gemmology, including natural stones and their treatments, synthetics and simulated gemstones. In addition, sections such as Gem Notes, What’s New, Conferences, Learning Opportunities, New Media and Literature of Interest inform readers about new instruments, publications, articles and educational events.
The Journal is currently published by Gem-A in collaboration with the Swiss Gemmological Institute (SSEF) and with support from American Gemological Laboratories (AGL).