CNN-RNN Hybrid Model for Diagnosis of COVID-19 on X-Ray Imagery

Novem Uly, Hendry Hendry, Ade Iriani
{"title":"CNN-RNN Hybrid Model for Diagnosis of COVID-19 on X-Ray Imagery","authors":"Novem Uly, Hendry Hendry, Ade Iriani","doi":"10.31849/digitalzone.v14i1.13668","DOIUrl":null,"url":null,"abstract":"Abstract \n This research aims to implement deep learning in determining Covid-19 or normal cases using X-Ray imagery. The method used is CNN (ResNet50) and RNN (LSTM). The research phase begins with data collection, data preprocessing, method modeling, method testing and method evaluation. The data was taken from the kagle.com site with the amount of data used 1.000 images where 500 covid data and 500 normal data, the data is divided into 80% training data, 10% validation data and 10% test data. The results of the evaluation by calculating the ResNet50-LSTM confusion matrix have a value of 95% accuracy, 96% precision, 94% recall and 95% F1-score. At the method testing stage, the researcher got the results of the proposed method experiencing overfitting seen by the comparison of the loss values ​​in the validation data which were not as good as the loss values ​​of the training data. From the results of evaluation and method testing, research can be used as a recommendation in cases of Covid-19 or normal. \n ","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31849/digitalzone.v14i1.13668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract  This research aims to implement deep learning in determining Covid-19 or normal cases using X-Ray imagery. The method used is CNN (ResNet50) and RNN (LSTM). The research phase begins with data collection, data preprocessing, method modeling, method testing and method evaluation. The data was taken from the kagle.com site with the amount of data used 1.000 images where 500 covid data and 500 normal data, the data is divided into 80% training data, 10% validation data and 10% test data. The results of the evaluation by calculating the ResNet50-LSTM confusion matrix have a value of 95% accuracy, 96% precision, 94% recall and 95% F1-score. At the method testing stage, the researcher got the results of the proposed method experiencing overfitting seen by the comparison of the loss values ​​in the validation data which were not as good as the loss values ​​of the training data. From the results of evaluation and method testing, research can be used as a recommendation in cases of Covid-19 or normal.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于x射线图像的COVID-19诊断CNN-RNN混合模型
摘要本研究旨在利用x射线图像对新冠肺炎或正常病例进行深度学习。使用的方法是CNN (ResNet50)和RNN (LSTM)。研究阶段从数据收集、数据预处理、方法建模、方法测试和方法评价开始。数据取自kagle.com网站,数据量为1000张图像,其中500张是新冠肺炎数据,500张是正常数据,数据分为80%的训练数据、10%的验证数据和10%的测试数据。通过计算ResNet50-LSTM混淆矩阵的评价结果,准确率为95%,精密度为96%,召回率为94%,F1-score为95%。在方法测试阶段,研究人员通过对比验证数据中的损失值,得到了所提出方法经历过拟合的结果,这些损失值不如训练数据的损失值。从评估和方法测试的结果来看,研究可作为新冠肺炎病例或正常病例的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
14 weeks
期刊最新文献
Analisis sentimen masyarakat terhadap informasi penerapan PPN atas renovasi dan membangun rumah sendiri pada media sosial youtube dengan metode svm dan naive bayes Simulasi Rancangan Smart Home System Menggunakan Cisco Packet Tracer Analisis kejahatan phising pada sektor e-commerce di marketplace shopee Combination of AHP and SMART Methods in Determining Recipients of Direct Village Fund Cash Assistance Fuzzy Inference System for The Risks Pregnancy Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1