In vitro models of soft tissue damage by implant-associated frictional shear stresses.

IF 0.5 Q3 AREA STUDIES Comparative Southeast European Studies Pub Date : 2023-05-01 Epub Date: 2022-11-03 DOI:10.1177/13506501221132897
Jonah M Rosas, Dixon J Atkins, Allison L Chau, Yen-Tsung Chen, Rachel Bae, Megan K Cavanaugh, Ricardo I Espinosa Lima, Andrew Bordeos, Michael G Bryant, Angela A Pitenis
{"title":"<i>In vitro</i> models of soft tissue damage by implant-associated frictional shear stresses.","authors":"Jonah M Rosas, Dixon J Atkins, Allison L Chau, Yen-Tsung Chen, Rachel Bae, Megan K Cavanaugh, Ricardo I Espinosa Lima, Andrew Bordeos, Michael G Bryant, Angela A Pitenis","doi":"10.1177/13506501221132897","DOIUrl":null,"url":null,"abstract":"Silicone elastomer medical implants are ubiquitous in medicine, particularly for breast augmentation. However, when these devices are placed within the body, disruption of the natural biological interfaces occurs, which significantly changes the native energy-dissipation mechanisms of living systems. These new interfaces can introduce non-physiological contact pressures and tribological conditions that provoke inflammation and soft tissue damage. Despite their significance, the biotribological properties of implant-tissue and implant-extracellular matrix (ECM) interfaces remain poorly understood. Here, we developed an in vitro model of soft tissue damage using a custom-built in situ biotribometer mounted onto a confocal microscope. Sections of commercially-available silicone breast implants with distinct and clinically relevant surface roughness ( R a = 0.2 ± 0.03 μ m, 2.7 ± 0.6 μ m, and 32 ± 7.0 μ m) were mounted to spherically-capped hydrogel probes and slid against collagen-coated hydrogel surfaces as well as healthy breast epithelial (MCF10A) cell monolayers to model implant-ECM and implant-tissue interfaces. In contrast to the “smooth” silicone implants ( R a < 10 μ m), we demonstrate that the “microtextured” silicone implant ( 10 < R a < 50 μ m) induced higher frictional shear stress ( τ > 100   Pa), which led to greater collagen removal and cell rupture/delamination. Our studies may provide insights into post-implantation tribological interactions between silicone breast implants and soft tissues.","PeriodicalId":29828,"journal":{"name":"Comparative Southeast European Studies","volume":"35 1","pages":"1264-1271"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683933/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Southeast European Studies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501221132897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 1

Abstract

Silicone elastomer medical implants are ubiquitous in medicine, particularly for breast augmentation. However, when these devices are placed within the body, disruption of the natural biological interfaces occurs, which significantly changes the native energy-dissipation mechanisms of living systems. These new interfaces can introduce non-physiological contact pressures and tribological conditions that provoke inflammation and soft tissue damage. Despite their significance, the biotribological properties of implant-tissue and implant-extracellular matrix (ECM) interfaces remain poorly understood. Here, we developed an in vitro model of soft tissue damage using a custom-built in situ biotribometer mounted onto a confocal microscope. Sections of commercially-available silicone breast implants with distinct and clinically relevant surface roughness ( R a = 0.2 ± 0.03 μ m, 2.7 ± 0.6 μ m, and 32 ± 7.0 μ m) were mounted to spherically-capped hydrogel probes and slid against collagen-coated hydrogel surfaces as well as healthy breast epithelial (MCF10A) cell monolayers to model implant-ECM and implant-tissue interfaces. In contrast to the “smooth” silicone implants ( R a < 10 μ m), we demonstrate that the “microtextured” silicone implant ( 10 < R a < 50 μ m) induced higher frictional shear stress ( τ > 100   Pa), which led to greater collagen removal and cell rupture/delamination. Our studies may provide insights into post-implantation tribological interactions between silicone breast implants and soft tissues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植入物相关的摩擦剪切应力对软组织损伤的体外模型。
硅胶弹性体医用植入物在医学上无处不在,尤其是隆胸。然而,当这些装置被放置在体内时,自然生物界面就会被破坏,这极大地改变了生命系统的天然能量耗散机制。这些新的界面可以引入非生理接触压力和摩擦条件,引起炎症和软组织损伤。尽管它们具有重要意义,但对植入物-组织和植入物-细胞外基质(ECM)界面的生物摩擦学特性仍然知之甚少。在这里,我们使用安装在共聚焦显微镜上的定制原位生物摩擦计开发了软组织损伤的体外模型。将具有明显和临床相关表面粗糙度(Ra = 0.2±0.03 μm, 2.7±0.6 μm和32±7.0 μm)的市买硅胶乳房植入物切片安装到球形水凝胶探针上,并在胶原包被的水凝胶表面以及健康乳腺上皮(MCF10A)细胞单层上滑动,以模拟植入物- ecm和植入物-组织界面。与“光滑”硅酮植入物(Ra < 10 μm)相比,“微纹理”硅酮植入物(10 < Ra < 50 μm)诱导更高的摩擦剪切应力(τ > 100 Pa),导致更多的胶原蛋白去除和细胞破裂/分层。我们的研究可能为植入后硅胶乳房植入物与软组织之间的摩擦学相互作用提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
40
期刊最新文献
The Politics of Covid-19 Vaccination Hesitancy in Southeastern Europe. The Slovenian Perception of the EU: From Outstanding Pupil to Solid Member Frontmatter The Age of Skin and the Epoch of an Author: A Eulogy to Dubravka Ugrešić Romania: A Case of Differentiated Integration into the European Union
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1