GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures

IF 3.3 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Journal of Zhejiang University-SCIENCE A Pub Date : 2023-05-01 DOI:10.1631/jzus.a2200311
Wen Wang, Yanfeng Zheng, Jingzhe Tang, Chao Yang, Yao-zhi Luo
{"title":"GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures","authors":"Wen Wang, Yanfeng Zheng, Jingzhe Tang, Chao Yang, Yao-zhi Luo","doi":"10.1631/jzus.a2200311","DOIUrl":null,"url":null,"abstract":"目的 结构的三维弹塑性接触问题通常包含强非线性, 且计算比较耗时。为解决这类问题, 本文提出基于图形处理器加速的有限质点法。 创新点 1. 发展基于有限质点法的六面体缩减积分单元; 2. 提出结构的三维并行接触算法。 方法 1. 发展基于有限质点法的六面体缩减积分单元, 并采用沙漏控制技术, 用于模拟结构的弹塑性行为; 2. 提出结构的三维并行接触算法, 将包含接触面的三维空间分解为立方体单元格, 仅在相邻单元格之间进行接触搜索, 并使用链式数据结构存储接触质点; 3. 通过基于图形处理器的并行计算技术对算法进行加速。 结论 1. 本文方法与有限元软件Abaqus/Explicit相比, 在总计算时间和接触计算时间上分别提升效率约80倍和340倍; 2. 本文方法的有效性和计算效率都得到了验证。 A graphics processing unit (GPU)-accelerated vector-form particle-element method, i.e., the finite particle method (FPM), is proposed for 3D elastoplastic contact of structures involving strong nonlinearities and computationally expensive contact calculations. A hexahedral FPM element with reduced integration and anti-hourglass is developed to model structural elastoplastic behaviors. The 3D space containing contact surfaces is decomposed into cubic cells and the contact search is performed between adjacent cells to improve search efficiency. A connected list data structure is used for storing contact particles to facilitate the parallel contact search procedure. The contact constraints are enforced by explicitly applying normal and tangential contact forces to the contact particles. The proposed method is fully accelerated by GPU-based parallel computing. After verification, the performance of the proposed method is compared with the serial finite element code Abaqus/Explicit by testing two large-scale contact examples. The maximum speedup of the proposed method over Abaqus/Explicit is approximately 80 for the overall computation and 340 for contact calculations. Therefore, the proposed method is shown to be effective and efficient.","PeriodicalId":17508,"journal":{"name":"Journal of Zhejiang University-SCIENCE A","volume":"1 1","pages":"1-11"},"PeriodicalIF":3.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-SCIENCE A","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/jzus.a2200311","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

目的 结构的三维弹塑性接触问题通常包含强非线性, 且计算比较耗时。为解决这类问题, 本文提出基于图形处理器加速的有限质点法。 创新点 1. 发展基于有限质点法的六面体缩减积分单元; 2. 提出结构的三维并行接触算法。 方法 1. 发展基于有限质点法的六面体缩减积分单元, 并采用沙漏控制技术, 用于模拟结构的弹塑性行为; 2. 提出结构的三维并行接触算法, 将包含接触面的三维空间分解为立方体单元格, 仅在相邻单元格之间进行接触搜索, 并使用链式数据结构存储接触质点; 3. 通过基于图形处理器的并行计算技术对算法进行加速。 结论 1. 本文方法与有限元软件Abaqus/Explicit相比, 在总计算时间和接触计算时间上分别提升效率约80倍和340倍; 2. 本文方法的有效性和计算效率都得到了验证。 A graphics processing unit (GPU)-accelerated vector-form particle-element method, i.e., the finite particle method (FPM), is proposed for 3D elastoplastic contact of structures involving strong nonlinearities and computationally expensive contact calculations. A hexahedral FPM element with reduced integration and anti-hourglass is developed to model structural elastoplastic behaviors. The 3D space containing contact surfaces is decomposed into cubic cells and the contact search is performed between adjacent cells to improve search efficiency. A connected list data structure is used for storing contact particles to facilitate the parallel contact search procedure. The contact constraints are enforced by explicitly applying normal and tangential contact forces to the contact particles. The proposed method is fully accelerated by GPU-based parallel computing. After verification, the performance of the proposed method is compared with the serial finite element code Abaqus/Explicit by testing two large-scale contact examples. The maximum speedup of the proposed method over Abaqus/Explicit is approximately 80 for the overall computation and 340 for contact calculations. Therefore, the proposed method is shown to be effective and efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维结构弹塑性接触的gpu加速矢量质点单元法
目的 结构的三维弹塑性接触问题通常包含强非线性, 且计算比较耗时。为解决这类问题, 本文提出基于图形处理器加速的有限质点法。 创新点 1. 发展基于有限质点法的六面体缩减积分单元; 2. 提出结构的三维并行接触算法。 方法 1. 发展基于有限质点法的六面体缩减积分单元, 并采用沙漏控制技术, 用于模拟结构的弹塑性行为; 2. 提出结构的三维并行接触算法, 将包含接触面的三维空间分解为立方体单元格, 仅在相邻单元格之间进行接触搜索, 并使用链式数据结构存储接触质点; 3. 通过基于图形处理器的并行计算技术对算法进行加速。 结论 1. 本文方法与有限元软件Abaqus/Explicit相比, 在总计算时间和接触计算时间上分别提升效率约80倍和340倍; 2. 本文方法的有效性和计算效率都得到了验证。 A graphics processing unit (GPU)-accelerated vector-form particle-element method, i.e., the finite particle method (FPM), is proposed for 3D elastoplastic contact of structures involving strong nonlinearities and computationally expensive contact calculations. A hexahedral FPM element with reduced integration and anti-hourglass is developed to model structural elastoplastic behaviors. The 3D space containing contact surfaces is decomposed into cubic cells and the contact search is performed between adjacent cells to improve search efficiency. A connected list data structure is used for storing contact particles to facilitate the parallel contact search procedure. The contact constraints are enforced by explicitly applying normal and tangential contact forces to the contact particles. The proposed method is fully accelerated by GPU-based parallel computing. After verification, the performance of the proposed method is compared with the serial finite element code Abaqus/Explicit by testing two large-scale contact examples. The maximum speedup of the proposed method over Abaqus/Explicit is approximately 80 for the overall computation and 340 for contact calculations. Therefore, the proposed method is shown to be effective and efficient.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Zhejiang University-SCIENCE A
Journal of Zhejiang University-SCIENCE A 工程技术-工程:综合
CiteScore
5.60
自引率
12.50%
发文量
2964
审稿时长
2.9 months
期刊介绍: Journal of Zhejiang University SCIENCE A covers research in Applied Physics, Mechanical and Civil Engineering, Environmental Science and Energy, Materials Science and Chemical Engineering, etc.
期刊最新文献
A novel approach for the optimal arrangement of tube bundles in a 1000-MW condenser Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator Dynamics of buoyancy-driven microflow in a narrow annular space Key technologies and development trends of the soft abrasive flow finishing method Solid-liquid flow characteristics and sticking-force analysis of valve-core fitting clearance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1