Graph-Based Methods for Language Processing and Information Retrieval

Dragomir R. Radev
{"title":"Graph-Based Methods for Language Processing and Information Retrieval","authors":"Dragomir R. Radev","doi":"10.1109/SLT.2006.326781","DOIUrl":null,"url":null,"abstract":"Summary form only given. A number of problems in information retrieval and natural language processing can be approached using graph theory. Some representative examples in IR include Brin and Page's Pagerank and Kleinberg's HITS for document ranking using graph-based random walk models. In NLP, one could mention Pang and Lee's work on sentiment analysis using graph min- cuts, Mihalcea's work on word sense disambiguation, Zhu et al.'s label propagation algorithms, Toutanova et al.'s prepositional attachment algorithm, and McDonald et al.'s dependency parsing algorithm using minimum spanning trees. In this talk I will quickly summarize three graph-based algorithms developed recently at the University of Michigan: (a) lexrank, a method for multidocument summarization based on random walks on lexical centrality graphs, (b) TUMBL, a generic method using bipartite graphs for semi-supervised learning, and (c) biased lexrank, a semi-supervised technique for passage ranking for information retrieval and discuss the applicability of such techniques to other problems in Natural Language Processing and Information Retrieval.","PeriodicalId":74811,"journal":{"name":"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology","volume":"6 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2006.326781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary form only given. A number of problems in information retrieval and natural language processing can be approached using graph theory. Some representative examples in IR include Brin and Page's Pagerank and Kleinberg's HITS for document ranking using graph-based random walk models. In NLP, one could mention Pang and Lee's work on sentiment analysis using graph min- cuts, Mihalcea's work on word sense disambiguation, Zhu et al.'s label propagation algorithms, Toutanova et al.'s prepositional attachment algorithm, and McDonald et al.'s dependency parsing algorithm using minimum spanning trees. In this talk I will quickly summarize three graph-based algorithms developed recently at the University of Michigan: (a) lexrank, a method for multidocument summarization based on random walks on lexical centrality graphs, (b) TUMBL, a generic method using bipartite graphs for semi-supervised learning, and (c) biased lexrank, a semi-supervised technique for passage ranking for information retrieval and discuss the applicability of such techniques to other problems in Natural Language Processing and Information Retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图的语言处理和信息检索方法
只提供摘要形式。信息检索和自然语言处理中的许多问题都可以用图论来解决。IR中的一些代表性例子包括Brin和Page的Pagerank和Kleinberg使用基于图的随机漫步模型进行文档排名的HITS。在NLP中,人们可以提到Pang和Lee使用图最小切割进行情感分析的工作,Mihalcea在词义消歧方面的工作,Zhu等人的标签传播算法,Toutanova等人的prepositional attachment算法,以及McDonald等人使用最小生成树的依赖解析算法。在这次演讲中,我将快速总结密歇根大学最近开发的三种基于图的算法:(a) lexrank,一种基于词汇中心图随机游走的多文档摘要方法,(b) TUMBL,一种使用二部图进行半监督学习的通用方法,以及(c) biased lexrank,一种用于信息检索的段落排序的半监督技术,并讨论了这些技术在自然语言处理和信息检索中的其他问题的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STYLETTS-VC: ONE-SHOT VOICE CONVERSION BY KNOWLEDGE TRANSFER FROM STYLE-BASED TTS MODELS. COMPUTATIONAL ANALYSIS OF TRAJECTORIES OF LINGUISTIC DEVELOPMENT IN AUTISM. ROBUST DETECTION OF VOICED SEGMENTS IN SAMPLES OF EVERYDAY CONVERSATIONS USING UNSUPERVISED HMMS. Efficient prior and incremental beam width control to suppress excessive speech recognition time based on score range estimation Information Extraction from speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1