Vapor–Liquid–Solid Growth of Nanowires under the conditions of external faceting

E. Levchenko, V. Nebol’sin, V. Yuryev, Nada Swayikat
{"title":"Vapor–Liquid–Solid Growth of Nanowires under the conditions of external faceting","authors":"E. Levchenko, V. Nebol’sin, V. Yuryev, Nada Swayikat","doi":"10.1002/pssb.202300090","DOIUrl":null,"url":null,"abstract":"In this paper, we have considered the processes that occur at the interfaces during the nanowires (NWs) growth by the Vapor→Droplet, Liquid→Solid mechanism (VLS), and how that leads to the faceting of the sidewall surface of the NWs. It is shown that faceting is possible only when the Wetting Scenario of the VLS‐growth of the NWs is accomplished due to the exit of the oblique closed packed faces to the sidewall surface of the NWs. Those oblique closed‐packed faces emerge at the crystallization front near the triple phase line. The faceting of the sidewall surface of the NWs can be controlled (i) by changing the contact angle of the catalyst droplet on the top of the NWs with the appropriate catalysts; (ii) by introducing the impurities into the gas phase, which decreases the free surface energy of the catalyst droplet or (iii) by changing the temperature.This article is protected by copyright. All rights reserved.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (b)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssb.202300090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we have considered the processes that occur at the interfaces during the nanowires (NWs) growth by the Vapor→Droplet, Liquid→Solid mechanism (VLS), and how that leads to the faceting of the sidewall surface of the NWs. It is shown that faceting is possible only when the Wetting Scenario of the VLS‐growth of the NWs is accomplished due to the exit of the oblique closed packed faces to the sidewall surface of the NWs. Those oblique closed‐packed faces emerge at the crystallization front near the triple phase line. The faceting of the sidewall surface of the NWs can be controlled (i) by changing the contact angle of the catalyst droplet on the top of the NWs with the appropriate catalysts; (ii) by introducing the impurities into the gas phase, which decreases the free surface energy of the catalyst droplet or (iii) by changing the temperature.This article is protected by copyright. All rights reserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外饰面条件下纳米线的气液固生长
在本文中,我们考虑了在纳米线(NWs)生长过程中,蒸汽→液滴、液体→固体机制(VLS)在界面上发生的过程,以及该过程如何导致NWs侧壁表面的面化。研究表明,只有当NWs的VLS生长的润湿场景完成时,由于倾斜的封闭堆积面出口到NWs的侧壁面,才有可能出现面状。这些倾斜的封闭堆积面出现在靠近三相线的结晶前沿。可通过改变纳米粒子顶部的催化剂液滴与合适催化剂的接触角来控制纳米粒子侧壁表面的面形;(ii)通过将杂质引入气相,从而降低催化剂液滴的自由表面能或(iii)通过改变温度。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activation Energy of DC Hopping Conductivity of Lightly Doped Weakly Compensated Crystalline Semiconductors Learning Model Based on Electrochemical Metallization Memristor with Cluster Residual Effect Incorporation and Interaction of Co‐Doped Be and Mg in GaN Grown by Metal‐Organic Chemic Vapor Deposition Extending the Tight‐Binding Model by Discrete Fractional Fourier Transform Theoretical Study of Magnetization and Electrical Conductivity of Ion‐Doped KBiFe2O5 Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1