Jiehua Feng, Dongya Zhao, Xing-gang Yan, S. Spurgeon
{"title":"Output feedback backstepping control for non-linear systems using an adaptive finite time sliding mode observer","authors":"Jiehua Feng, Dongya Zhao, Xing-gang Yan, S. Spurgeon","doi":"10.1093/imamci/dnad014","DOIUrl":null,"url":null,"abstract":"\n In this paper, a class of non-linear systems in normal form is considered, which is composed of internal and external dynamics. An adaptive finite time sliding mode observer is first designed so that the system states, unmatched uncertain parameters and matched uncertainties can all be observed in finite time. Then, the systematic backstepping design procedure is employed to develop a novel output feedback backstepping control (OFBC). The proposed OFBC method can stabilize the considered non-linear systems despite the presence of non-linear internal dynamics and unmatched uncertainties. A Lyapunov method is used to ensure that the closed-loop system is asymptotically stable. Two MATLAB simulation examples are used to demonstrate the method.","PeriodicalId":56128,"journal":{"name":"IMA Journal of Mathematical Control and Information","volume":"118 1","pages":"306-331"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Mathematical Control and Information","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1093/imamci/dnad014","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a class of non-linear systems in normal form is considered, which is composed of internal and external dynamics. An adaptive finite time sliding mode observer is first designed so that the system states, unmatched uncertain parameters and matched uncertainties can all be observed in finite time. Then, the systematic backstepping design procedure is employed to develop a novel output feedback backstepping control (OFBC). The proposed OFBC method can stabilize the considered non-linear systems despite the presence of non-linear internal dynamics and unmatched uncertainties. A Lyapunov method is used to ensure that the closed-loop system is asymptotically stable. Two MATLAB simulation examples are used to demonstrate the method.
期刊介绍:
The Journal is to provide an outlet for papers which are original and of high quality in mathematical control theory, systems theory, and applied information sciences. Short papers and mathematical correspondence or technical notes will be welcome, although the primary function of the journal is to publish papers of substantial length and coverage. The emphasis will be upon relevance, originality and clarify of presentation, although timeliness may well be an important feature in acceptable papers. Speculative papers that suggest new avenues for research or potential solutions to unsolved problems of control and information theory will be particularly welcome. Specific application papers will not normally be within the remit of the journal. Applications that illustrate techniques or theories will be acceptable. A prime function of the journal is to encourage the interplay between control and information theory and other mathematical sciences.
All submitted papers will be judged on their merits by at least two referees and a full paper report will be available to the intending authors. Submitted articles will in general be published in an issue within six months of submission. Papers should not have previously published, nor should they be undes consideration for publication in another journal. This Journal takes publication ethics very seriously. If misconduct is found or suspected after the manuscript is published, the journal will investigate the matter and this may result in the article subsequently being retracted.