CrashSim: An Efficient Algorithm for Computing SimRank over Static and Temporal Graphs

Mo Li, F. Choudhury, Renata Borovica-Gajic, Zhiqiong Wang, Junchang Xin, Jianxin Li
{"title":"CrashSim: An Efficient Algorithm for Computing SimRank over Static and Temporal Graphs","authors":"Mo Li, F. Choudhury, Renata Borovica-Gajic, Zhiqiong Wang, Junchang Xin, Jianxin Li","doi":"10.1109/ICDE48307.2020.00103","DOIUrl":null,"url":null,"abstract":"SimRank is a significant metric to measure the similarity of nodes in graph data analysis. The problem of SimRank computation has been studied extensively, however there is no existing work that can provide one unified algorithm to support the SimRank computation both on static and temporal graphs. In this work, we first propose CrashSim, an index-free algorithm for single-source SimRank computation in static graphs. CrashSim can provide provable approximation guarantees for the computational results in an efficient way. In addition, as the reallife graphs are often represented as temporal graphs, CrashSim enables efficient computation of SimRank in temporal graphs. We formally define two typical SimRank queries in temporal graphs, and then solve them by developing an efficient algorithm based on CrashSim, called CrashSim-T. From the extensive experimental evaluation using five real-life and synthetic datasets, it can be seen that the CrashSim algorithm and CrashSim-T algorithm substantially improve the efficiency of the state-of-the-art SimRank algorithms by about 30%, while achieving the precision of the result set with about 97%.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"25 1","pages":"1141-1152"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

SimRank is a significant metric to measure the similarity of nodes in graph data analysis. The problem of SimRank computation has been studied extensively, however there is no existing work that can provide one unified algorithm to support the SimRank computation both on static and temporal graphs. In this work, we first propose CrashSim, an index-free algorithm for single-source SimRank computation in static graphs. CrashSim can provide provable approximation guarantees for the computational results in an efficient way. In addition, as the reallife graphs are often represented as temporal graphs, CrashSim enables efficient computation of SimRank in temporal graphs. We formally define two typical SimRank queries in temporal graphs, and then solve them by developing an efficient algorithm based on CrashSim, called CrashSim-T. From the extensive experimental evaluation using five real-life and synthetic datasets, it can be seen that the CrashSim algorithm and CrashSim-T algorithm substantially improve the efficiency of the state-of-the-art SimRank algorithms by about 30%, while achieving the precision of the result set with about 97%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CrashSim:一个在静态和时间图上计算simmrank的有效算法
simmrank是图数据分析中衡量节点相似性的重要指标。simmrank计算问题已经得到了广泛的研究,但目前还没有一种统一的算法来支持静态图和时态图上的simmrank计算。在这项工作中,我们首先提出了CrashSim,一种无索引的算法,用于静态图中的单源simmrank计算。CrashSim可以有效地为计算结果提供可证明的近似保证。此外,由于现实生活中的图形通常表示为时间图,因此CrashSim可以在时间图中高效地计算simmrank。我们在时间图中正式定义了两个典型的SimRank查询,然后通过开发一种基于CrashSim的高效算法(称为CrashSim- t)来解决它们。通过使用5个真实数据集和合成数据集进行广泛的实验评估,可以看出,CrashSim算法和CrashSim- t算法将目前最先进的simmrank算法的效率大幅提高了约30%,同时实现了约97%的结果集精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbocharging Geospatial Visualization Dashboards via a Materialized Sampling Cube Approach Mobility-Aware Dynamic Taxi Ridesharing Multiscale Frequent Co-movement Pattern Mining Automatic Calibration of Road Intersection Topology using Trajectories Turbine: Facebook’s Service Management Platform for Stream Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1