Using Ranking-CNN for Age Estimation

Shixing Chen, Caojin Zhang, Ming Dong, Jialiang Le, M. Rao
{"title":"Using Ranking-CNN for Age Estimation","authors":"Shixing Chen, Caojin Zhang, Ming Dong, Jialiang Le, M. Rao","doi":"10.1109/CVPR.2017.86","DOIUrl":null,"url":null,"abstract":"Human age is considered an important biometric trait for human identification or search. Recent research shows that the aging features deeply learned from large-scale data lead to significant performance improvement on facial image-based age estimation. However, age-related ordinal information is totally ignored in these approaches. In this paper, we propose a novel Convolutional Neural Network (CNN)-based framework, ranking-CNN, for age estimation. Ranking-CNN contains a series of basic CNNs, each of which is trained with ordinal age labels. Then, their binary outputs are aggregated for the final age prediction. We theoretically obtain a much tighter error bound for ranking-based age estimation. Moreover, we rigorously prove that ranking-CNN is more likely to get smaller estimation errors when compared with multi-class classification approaches. Through extensive experiments, we show that statistically, ranking-CNN significantly outperforms other state-of-the-art age estimation models on benchmark datasets.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"9 1","pages":"742-751"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"228","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 228

Abstract

Human age is considered an important biometric trait for human identification or search. Recent research shows that the aging features deeply learned from large-scale data lead to significant performance improvement on facial image-based age estimation. However, age-related ordinal information is totally ignored in these approaches. In this paper, we propose a novel Convolutional Neural Network (CNN)-based framework, ranking-CNN, for age estimation. Ranking-CNN contains a series of basic CNNs, each of which is trained with ordinal age labels. Then, their binary outputs are aggregated for the final age prediction. We theoretically obtain a much tighter error bound for ranking-based age estimation. Moreover, we rigorously prove that ranking-CNN is more likely to get smaller estimation errors when compared with multi-class classification approaches. Through extensive experiments, we show that statistically, ranking-CNN significantly outperforms other state-of-the-art age estimation models on benchmark datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用rank - cnn进行年龄估计
人类年龄被认为是人类身份识别或搜索的重要生物特征。近年来的研究表明,从大规模数据中深度学习的年龄特征可以显著提高基于人脸图像的年龄估计的性能。然而,这些方法完全忽略了与年龄相关的序数信息。在本文中,我们提出了一种新的基于卷积神经网络(CNN)的框架,rank -CNN,用于年龄估计。rank - cnn包含一系列基本的cnn,每个cnn都用有序的年龄标签进行训练。然后,汇总它们的二进制输出,用于最终的年龄预测。理论上,我们得到了基于排名的年龄估计的更小的误差范围。此外,我们严格证明了与多类分类方法相比,rank - cnn更有可能获得更小的估计误差。通过广泛的实验,我们在统计上表明,在基准数据集上,rank - cnn显著优于其他最先进的年龄估计模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1