Securing Smartphone Handwritten Pin Codes with Recurrent Neural Networks

Gaël Le Lan, Vincent Frey
{"title":"Securing Smartphone Handwritten Pin Codes with Recurrent Neural Networks","authors":"Gaël Le Lan, Vincent Frey","doi":"10.1109/ICASSP.2019.8683871","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of recurrent neural networks to secure PIN code based authentication on smartphones, in a scenario where the user is invited to draw digits on the touchscreen. From the sequence of successive positions of the users finger on the touchscreen, a bidirectional recurrent neural network computes a discriminative embedding in terms of writer traits, carrying the contextual information of the written digit. This allows to reject impostors who would have knowledge of the PIN code. The neural network is trained to recognize both users and digits of a training dataset. Evaluations are run on two datasets of 43 and 33 users, respectively, absent from the training dataset. Results show that when enrolling the users on 4 examples of each digit, the Equal Error Rate reaches 4.9% for a 4-digit PIN code. Including digit value prediction during training is key to achieve good performances.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"76 1","pages":"2612-2616"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper investigates the use of recurrent neural networks to secure PIN code based authentication on smartphones, in a scenario where the user is invited to draw digits on the touchscreen. From the sequence of successive positions of the users finger on the touchscreen, a bidirectional recurrent neural network computes a discriminative embedding in terms of writer traits, carrying the contextual information of the written digit. This allows to reject impostors who would have knowledge of the PIN code. The neural network is trained to recognize both users and digits of a training dataset. Evaluations are run on two datasets of 43 and 33 users, respectively, absent from the training dataset. Results show that when enrolling the users on 4 examples of each digit, the Equal Error Rate reaches 4.9% for a 4-digit PIN code. Including digit value prediction during training is key to achieve good performances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用循环神经网络保护智能手机手写Pin码
本文研究了在用户被邀请在触摸屏上画数字的情况下,使用循环神经网络来保护智能手机上基于PIN码的身份验证。从用户手指在触摸屏上的连续位置序列中,一个双向循环神经网络根据书写者的特征计算出一个判别嵌入,并携带书写数字的上下文信息。这允许拒绝知道PIN码的冒名顶替者。神经网络被训练来识别训练数据集的用户和数字。评估分别在训练数据集中缺失的43和33个用户的两个数据集上运行。结果表明,当对每个数字的4个示例进行注册时,4位PIN码的平均错误率达到4.9%。在训练过程中包含数字值预测是获得良好表现的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1