Split liability assessment in car accident using 3D convolutional neural network

IF 4.8 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Design and Engineering Pub Date : 2023-06-28 DOI:10.1093/jcde/qwad063
Sungjae Lee, Yong-Gu Lee
{"title":"Split liability assessment in car accident using 3D convolutional neural network","authors":"Sungjae Lee, Yong-Gu Lee","doi":"10.1093/jcde/qwad063","DOIUrl":null,"url":null,"abstract":"\n In a car accident, negligence is evaluated through a process known as split liability assessment. This assessment involves reconstructing the accident scenario based on information gathered from sources such as dashcam footage. The final determination of negligence is made by simulating the information contained in the video. Therefore, accident cases for split liability assessment should be classified based on information affecting the negligence degree. While deep learning has recently been in the spotlight for video recognition using short video clips, no research has been conducted to extract meaningful information from long videos, which are necessary for split liability assessment. To address this issue, we propose a new task for analyzing long videos by stacking the important information predicted through the 3D CNNs model. We demonstrate the feasibility of our approach by proposing a split liability assessment method using dashcam footage.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":"11 1","pages":"1579-1601"},"PeriodicalIF":4.8000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwad063","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In a car accident, negligence is evaluated through a process known as split liability assessment. This assessment involves reconstructing the accident scenario based on information gathered from sources such as dashcam footage. The final determination of negligence is made by simulating the information contained in the video. Therefore, accident cases for split liability assessment should be classified based on information affecting the negligence degree. While deep learning has recently been in the spotlight for video recognition using short video clips, no research has been conducted to extract meaningful information from long videos, which are necessary for split liability assessment. To address this issue, we propose a new task for analyzing long videos by stacking the important information predicted through the 3D CNNs model. We demonstrate the feasibility of our approach by proposing a split liability assessment method using dashcam footage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三维卷积神经网络的车祸责任分割评估
在车祸中,过失是通过一个被称为责任分摊评估的过程来评估的。这种评估包括根据从行车记录仪录像等来源收集的信息重建事故场景。最终的过失判定是通过模拟视频中包含的信息来进行的。因此,应根据影响过失程度的信息对责任分摊的事故案例进行分类。虽然深度学习最近已经成为使用短视频片段进行视频识别的焦点,但尚未进行过从长视频中提取有意义信息的研究,而这些信息是分割责任评估所必需的。为了解决这个问题,我们提出了一个新的任务,即通过叠加3D cnn模型预测的重要信息来分析长视频。我们通过提出一种使用行车记录仪录像的责任分摊评估方法来证明我们方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Design and Engineering
Journal of Computational Design and Engineering Computer Science-Human-Computer Interaction
CiteScore
7.70
自引率
20.40%
发文量
125
期刊介绍: Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering: • Theory and its progress in computational advancement for design and engineering • Development of computational framework to support large scale design and engineering • Interaction issues among human, designed artifacts, and systems • Knowledge-intensive technologies for intelligent and sustainable systems • Emerging technology and convergence of technology fields presented with convincing design examples • Educational issues for academia, practitioners, and future generation • Proposal on new research directions as well as survey and retrospectives on mature field.
期刊最新文献
A Study on Ship Hull Form Transformation Using Convolutional Autoencoder A new approach for solving global optimization and engineering problems based on modified Sea Horse Optimizer Multi-strategy enhanced kernel search optimization and its application in economic emission dispatch problems BRepGAT: Graph neural network to segment machining feature faces in a B-rep model Embedding Deep Neural Network in Enhanced Schapery Theory for Progressive Failure Analysis of Fiber Reinforced Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1