{"title":"SOC technology for future wireless communications","authors":"C. Hewes","doi":"10.1109/WCT.2003.1321418","DOIUrl":null,"url":null,"abstract":"Summary form only given. Wireless communications technology has gone through very rapid evolution in recent years. Perhaps the most dramatic change is seen is chip sets for cellular phones. In just a few years, the silicon die area to support a GSM cellular digital base band function has shrunk by a factor of 19 which, along with silicon wafer size increase, has resulted in a 60-fold increase in the number of silicon die per wafer. The chip set solutions for cellular phones have changed from several chips and hundreds of external passive components to just three chips and about 50 external components for a GSM GPRS device today. A single chip implementation of GPRS is expected soon. Besides the current state of the art in SOC, two R&D projects at Texas Instruments illustrate the scope and nature of the R&D work for future wireless communications: multi-antenna MIMO (multi-input, multi output) system for future wireless LANs and a UWB (ultra wide band) effort.","PeriodicalId":6305,"journal":{"name":"2003 IEEE Topical Conference on Wireless Communication Technology","volume":"19 1","pages":"7-"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Topical Conference on Wireless Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCT.2003.1321418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Summary form only given. Wireless communications technology has gone through very rapid evolution in recent years. Perhaps the most dramatic change is seen is chip sets for cellular phones. In just a few years, the silicon die area to support a GSM cellular digital base band function has shrunk by a factor of 19 which, along with silicon wafer size increase, has resulted in a 60-fold increase in the number of silicon die per wafer. The chip set solutions for cellular phones have changed from several chips and hundreds of external passive components to just three chips and about 50 external components for a GSM GPRS device today. A single chip implementation of GPRS is expected soon. Besides the current state of the art in SOC, two R&D projects at Texas Instruments illustrate the scope and nature of the R&D work for future wireless communications: multi-antenna MIMO (multi-input, multi output) system for future wireless LANs and a UWB (ultra wide band) effort.