An Energy-Efficient, Yet Highly-Accurate, Approximate Non-Iterative Divider

Marzieh Vaeztourshizi, M. Kamal, A. Afzali-Kusha, M. Pedram
{"title":"An Energy-Efficient, Yet Highly-Accurate, Approximate Non-Iterative Divider","authors":"Marzieh Vaeztourshizi, M. Kamal, A. Afzali-Kusha, M. Pedram","doi":"10.1145/3218603.3218650","DOIUrl":null,"url":null,"abstract":"In1 this paper, we present a highly accurate and energy efficient non-iterative divider, which uses multiplication as its main building block. In this structure, the division operation is performed by first reforming both dividend and divisor inputs, and then multiplying the rounded value of the scaled dividend by the reciprocal of the rounded value of the scaled divisor. Precisely, the interval representing the fractional value of the scaled divisor is partitioned into non-overlapping sub-intervals, and the reciprocal of the scaled divisor is then approximated with a linear function in each of these sub-intervals. The efficacy of the proposed divider structure is assessed by comparing its design parameters and accuracy with state-of-the-art, non-iterative approximate dividers as well as exact dividers in 45nm digital CMOS technology. Circuit simulation results show that the mean absolute relative error of the proposed structure for doing 1 32-bit division is less than 0.2%, while the proposed structure has significantly lower energy consumption than the exact divider. Finally, the effectiveness of the proposed divider in one image processing application is reported and discussed.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In1 this paper, we present a highly accurate and energy efficient non-iterative divider, which uses multiplication as its main building block. In this structure, the division operation is performed by first reforming both dividend and divisor inputs, and then multiplying the rounded value of the scaled dividend by the reciprocal of the rounded value of the scaled divisor. Precisely, the interval representing the fractional value of the scaled divisor is partitioned into non-overlapping sub-intervals, and the reciprocal of the scaled divisor is then approximated with a linear function in each of these sub-intervals. The efficacy of the proposed divider structure is assessed by comparing its design parameters and accuracy with state-of-the-art, non-iterative approximate dividers as well as exact dividers in 45nm digital CMOS technology. Circuit simulation results show that the mean absolute relative error of the proposed structure for doing 1 32-bit division is less than 0.2%, while the proposed structure has significantly lower energy consumption than the exact divider. Finally, the effectiveness of the proposed divider in one image processing application is reported and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种高效、高精度的近似非迭代除法器
在本文中,我们提出了一种高精度和节能的非迭代除法,它以乘法为主要构件。在这个结构中,执行除法操作首先对被除数和除数输入进行重组,然后将被除数的四舍五入值乘以被除数的四舍五入值的倒数。精确地说,将表示比例因子分数值的区间划分为不重叠的子区间,然后在每个子区间内用线性函数逼近比例因子的倒数。通过将其设计参数和精度与最先进的非迭代近似分频器以及45纳米数字CMOS技术中的精确分频器进行比较,评估了所提出的分频器结构的有效性。电路仿真结果表明,该结构进行1个32位除法的平均绝对相对误差小于0.2%,且能耗明显低于精确除法。最后,报告并讨论了该分频器在一个图像处理应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adiabatic and Clock-Powered Circuits Power Macro-Models for High-Level Power Estimation Stand-By Power Reduction for SRAM Memories Leakage in CMOS Nanometric Technologies Evolution of Deep Submicron Bulk and SOI Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1