S. Al-Agtash, Asma Alkhraibat, Mohamadian Hashem, Nisrein Al-Mutlaq
{"title":"Real-Time Operation of Microgrids","authors":"S. Al-Agtash, Asma Alkhraibat, Mohamadian Hashem, Nisrein Al-Mutlaq","doi":"10.4236/EPE.2021.131004","DOIUrl":null,"url":null,"abstract":"Microgrid (MG) systems effectively integrate a generation mix of solar, wind, and other renewable energy resources. The intermittent nature of renewable resources and the unpredictable weather conditions contribute largely to the unreliability of microgrid real-time operation. This paper investigates the behavior of microgrid for different intermittent scenarios of photovoltaic generation in real-time. Reactive power coordination control and load shedding mechanisms are used for reliable operation and are implemented using OPAL-RT simulator integrated with Matlab. In an islanded MG, load shedding can be an effective mechanism to maintain generation-load balance. The microgrid of the German Jordanian University (GJU) is used for illustration. The results show that reactive power coordination control not only stabilizes the MG operation in real-time but also reduces power losses on transmission lines. The results also show that the power losses at some substations are reduced by a range of 6% - 9.8%.","PeriodicalId":62938,"journal":{"name":"能源与动力工程(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源与动力工程(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/EPE.2021.131004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Microgrid (MG) systems effectively integrate a generation mix of solar, wind, and other renewable energy resources. The intermittent nature of renewable resources and the unpredictable weather conditions contribute largely to the unreliability of microgrid real-time operation. This paper investigates the behavior of microgrid for different intermittent scenarios of photovoltaic generation in real-time. Reactive power coordination control and load shedding mechanisms are used for reliable operation and are implemented using OPAL-RT simulator integrated with Matlab. In an islanded MG, load shedding can be an effective mechanism to maintain generation-load balance. The microgrid of the German Jordanian University (GJU) is used for illustration. The results show that reactive power coordination control not only stabilizes the MG operation in real-time but also reduces power losses on transmission lines. The results also show that the power losses at some substations are reduced by a range of 6% - 9.8%.