{"title":"Temperature dependence of some electron-solute reactions in n-hexane and iso-octane","authors":"J.H. Baxendale, B.P.H.M. Geelen, P.H.G. Sharpe","doi":"10.1016/0020-7055(76)90083-8","DOIUrl":null,"url":null,"abstract":"<div><p>The rate constants for the reactions of electrons with biphenyl, pyrene, perylene and carbon tetrachloride in <em>n</em>-hexane can all be expressed by the relation <span><math><mtext>k = 3·6(±1) × 10</mtext><msup><mi></mi><mn>14</mn></msup><mtext>exp</mtext><mtext> [</mtext><mtext>−14,600(±1000)</mtext><mtext>RT</mtext><mtext>] </mtext><mtext>mol</mtext><msup><mi></mi><mn>−1</mn></msup><mtext>dm</mtext><msup><mi></mi><mn>3</mn></msup><mtext>s</mtext><msup><mi></mi><mn>−1</mn></msup></math></span> over the temperature range 300-185 K. These are considered normal diffusion-controlled reactions, the activation energy (in J mol<sup>−1</sup>) being that for electron diffusion. For reaction with oxygen, <span><math><mtext>k = 5×10</mtext><msup><mi></mi><mn>12</mn></msup><mtext> exp (</mtext><mtext>−9600</mtext><mtext>RT</mtext><mtext>]</mtext></math></span> and the relatively slower rate for oxygen thus derives from the pre-exponential factor not from a higher activation energy, and is explained in terms of a reversible electron addition.</p><p>In iso-octane there is more variation with solute than in <em>n</em>-hexane. Forcarbon tetrachloride, biphenyl and oxygen the activation energies are 2000, 2800 and 3200 J mol<sup>−1</sup>, respectively, and the pre-exponential factors 1·5×10<sup>13</sup>, 4·0×10<sup>13</sup> and 1·0×10<sup>12</sup>, respectively. The rate constant with pyrene does not follow the Arrhenius expression and is about twice those for carbon tetrachloride and biphenyl at room temperature.</p></div>","PeriodicalId":100688,"journal":{"name":"International Journal for Radiation Physics and Chemistry","volume":"8 3","pages":"Pages 371-374"},"PeriodicalIF":0.0000,"publicationDate":"1976-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0020-7055(76)90083-8","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Radiation Physics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0020705576900838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The rate constants for the reactions of electrons with biphenyl, pyrene, perylene and carbon tetrachloride in n-hexane can all be expressed by the relation over the temperature range 300-185 K. These are considered normal diffusion-controlled reactions, the activation energy (in J mol−1) being that for electron diffusion. For reaction with oxygen, and the relatively slower rate for oxygen thus derives from the pre-exponential factor not from a higher activation energy, and is explained in terms of a reversible electron addition.
In iso-octane there is more variation with solute than in n-hexane. Forcarbon tetrachloride, biphenyl and oxygen the activation energies are 2000, 2800 and 3200 J mol−1, respectively, and the pre-exponential factors 1·5×1013, 4·0×1013 and 1·0×1012, respectively. The rate constant with pyrene does not follow the Arrhenius expression and is about twice those for carbon tetrachloride and biphenyl at room temperature.