External validation of an AI-driven breast cancer risk prediction model in a racially diverse cohort of women undergoing mammographic screening

A. Gastounioti, M. Eriksson, Eric A. Cohen, W. Mankowski, Lauren Pantalone, A. McCarthy, D. Kontos, P. Hall, E. Conant
{"title":"External validation of an AI-driven breast cancer risk prediction model in a racially diverse cohort of women undergoing mammographic screening","authors":"A. Gastounioti, M. Eriksson, Eric A. Cohen, W. Mankowski, Lauren Pantalone, A. McCarthy, D. Kontos, P. Hall, E. Conant","doi":"10.1117/12.2627140","DOIUrl":null,"url":null,"abstract":"The aim of this retrospective case-cohort study was to perform additional validation of an artificial intelligence (AI)-driven breast cancer risk model in a racially diverse cohort of women undergoing screening. We included 176 breast cancer cases with non-actionable mammographic screening exams 3 months to 2 years prior to cancer diagnosis and a random sample of 4,963 controls from women with non-actionable mammographic screening exams and at least one-year of negative follow-up (Hospital University Pennsylvania, PA, USA; 9/1/2010-1/6/2015). A risk score for each woman was extracted from full-field digital mammography (FFDM) images via an AI risk prediction model, previously developed and validated in a Swedish screening cohort. The performance of the AI risk model was assessed via age-adjusted area under the ROC curve (AUC) for the entire cohort, as well as for the two largest racial subgroups (White and Black). The performance of the Gail 5-year risk model was also evaluated for comparison purposes. The AI risk model demonstrated an AUC for all women = 0.68 95% CIs [0.64, 0.72]; for White = 0.67 [0.61, 0.72]; for Black = 0.70 [0.65, 0.76]. The AI risk model significantly outperformed the Gail risk model for all women (AUC = 0.68 vs AUC = 0.55, p<0.01) and for Black women (AUC = 0.71 vs AUC = 0.48, p<0.01), but not for White women (AUC = 0.66 vs AUC = 0.61, p=0.38). Preliminary findings in an independent dataset suggest a promising performance of the AI risk prediction model in a racially diverse breast cancer screening cohort.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"1 1","pages":"1228617 - 1228617-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2627140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this retrospective case-cohort study was to perform additional validation of an artificial intelligence (AI)-driven breast cancer risk model in a racially diverse cohort of women undergoing screening. We included 176 breast cancer cases with non-actionable mammographic screening exams 3 months to 2 years prior to cancer diagnosis and a random sample of 4,963 controls from women with non-actionable mammographic screening exams and at least one-year of negative follow-up (Hospital University Pennsylvania, PA, USA; 9/1/2010-1/6/2015). A risk score for each woman was extracted from full-field digital mammography (FFDM) images via an AI risk prediction model, previously developed and validated in a Swedish screening cohort. The performance of the AI risk model was assessed via age-adjusted area under the ROC curve (AUC) for the entire cohort, as well as for the two largest racial subgroups (White and Black). The performance of the Gail 5-year risk model was also evaluated for comparison purposes. The AI risk model demonstrated an AUC for all women = 0.68 95% CIs [0.64, 0.72]; for White = 0.67 [0.61, 0.72]; for Black = 0.70 [0.65, 0.76]. The AI risk model significantly outperformed the Gail risk model for all women (AUC = 0.68 vs AUC = 0.55, p<0.01) and for Black women (AUC = 0.71 vs AUC = 0.48, p<0.01), but not for White women (AUC = 0.66 vs AUC = 0.61, p=0.38). Preliminary findings in an independent dataset suggest a promising performance of the AI risk prediction model in a racially diverse breast cancer screening cohort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能驱动的乳腺癌风险预测模型在接受乳房x线摄影筛查的不同种族女性队列中的外部验证
本回顾性病例队列研究的目的是在接受筛查的不同种族女性队列中对人工智能(AI)驱动的乳腺癌风险模型进行额外验证。我们纳入了176例乳腺癌患者,在癌症诊断前3个月至2年进行了不可操作的乳房x光检查,并从进行不可操作的乳房x光检查和至少1年阴性随访的妇女中随机抽取4,963例对照(宾夕法尼亚医院大学,PA, USA;9/1/2010-1/6/2015)。通过人工智能风险预测模型从全视野数字乳房x线摄影(FFDM)图像中提取每位女性的风险评分,该模型先前在瑞典筛查队列中开发并验证。AI风险模型的性能通过整个队列以及两个最大的种族亚组(白人和黑人)的ROC曲线下年龄调整面积(AUC)进行评估。Gail 5年风险模型的表现也进行了评估以进行比较。AI风险模型显示,所有女性的AUC = 0.68 95% ci [0.64, 0.72];White = 0.67 [0.61, 0.72];为Black = 0.70[0.65, 0.76]。AI风险模型在所有女性(AUC = 0.68 vs AUC = 0.55, p<0.01)和黑人女性(AUC = 0.71 vs AUC = 0.48, p<0.01)中均显著优于Gail风险模型,但在白人女性(AUC = 0.66 vs AUC = 0.61, p=0.38)中表现不佳。一个独立数据集的初步发现表明,人工智能风险预测模型在种族多样化的乳腺癌筛查队列中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness of a U-net model for different image processing types in segmentation of the mammary gland region Lesion detection in contrast enhanced spectral mammography Correspondence between areas causing recall in breast cancer screening and artificial intelligence findings Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge Breast shape estimation and correction in CESM biopsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1