PowerHC: non linear normalization of distances for advanced nearest neighbor classification

M. Bicego, M. Orozco-Alzate
{"title":"PowerHC: non linear normalization of distances for advanced nearest neighbor classification","authors":"M. Bicego, M. Orozco-Alzate","doi":"10.1109/ICPR48806.2021.9413210","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the exploitation of non linear scaling of distances for advanced nearest neighbor classification. Starting from the recently found relation between the Hypersphere Classifier (HC) [1] and the Adaptive Nearest Neighbor rule (ANN) [2], here we propose PowerHC, an improved version of HC in which distances are normalized using a non linear mapping; non linear scaling of data, whose usefulness for feature spaces has been already assessed, has been hardly investigated for distances. A thorough experimental evaluation, involving 24 datasets and a challenging real world scenario of seismic signal classification, confirms the suitability of the proposed approach.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"12 1","pages":"1205-1211"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9413210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we investigate the exploitation of non linear scaling of distances for advanced nearest neighbor classification. Starting from the recently found relation between the Hypersphere Classifier (HC) [1] and the Adaptive Nearest Neighbor rule (ANN) [2], here we propose PowerHC, an improved version of HC in which distances are normalized using a non linear mapping; non linear scaling of data, whose usefulness for feature spaces has been already assessed, has been hardly investigated for distances. A thorough experimental evaluation, involving 24 datasets and a challenging real world scenario of seismic signal classification, confirms the suitability of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PowerHC:用于高级最近邻分类的距离非线性归一化
本文研究了利用非线性距离尺度进行高级最近邻分类的方法。从最近发现的超球分类器(HC)[1]和自适应最近邻规则(ANN)[2]之间的关系出发,我们提出了PowerHC,这是HC的改进版本,其中距离使用非线性映射进行规范化;数据的非线性尺度对特征空间的有用性已经得到了评估,但对距离的研究却很少。一项涉及24个数据集和具有挑战性的真实世界地震信号分类场景的全面实验评估证实了所提出方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory representation learning for Multi-Task NMRDP planning Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search A Randomized Algorithm for Sparse Recovery An Empirical Bayes Approach to Topic Modeling To Honor our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1