{"title":"Effect of light and oxygen on repetitive bacterial inactivation on uniform, adhesive, robust and stable Cu-polyester surfaces","authors":"S. Rtimi, R. Sanjinés, C. Pulgarin, J. Kiwi","doi":"10.1515/jaots-2016-0178","DOIUrl":null,"url":null,"abstract":"Abstract This study reports new findings on the sputtered Cu-polyester (Cu-PES) bacterial inactivation under low intensity visible light (λ >400 nm). Cu-PES samples sputtered for 160 s led to the complete inactivation of E. coli in anaerobic and aerobic media within 45 min. The (Cu-PES) oxidative radicals generated in aerobic media were not the only intermediates leading to bacterial inactivation. Bacterial inactivation also proceeds in the dark under anaerobic conditions. For this reason, the oxidative radicals were leading to bacterial reduction were unambiguously identified by appropriate scavengers. X-ray photoelectron spectroscopy (XPS) provided evidence for redox catalysis going within the time required by Cu-PES to induce bacterial reduction. Furthermore, the Cu-ions in the ppb range leached from the Cu-PES during bacterial reduction were monitored by inductively coupled plasma mass spectrometry (ICP-MS) and the Cu found were below the limit allowed for mammalian cells. By infrared spectroscopy (ATR-FTIR) the bacteria stretching shifts of the predominant lipo-polysaccharide (LPS) associated-(CH2) groups were monitored. The overstretching of these groups determined the time necessary for bond scission/bacterial inactivation.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract This study reports new findings on the sputtered Cu-polyester (Cu-PES) bacterial inactivation under low intensity visible light (λ >400 nm). Cu-PES samples sputtered for 160 s led to the complete inactivation of E. coli in anaerobic and aerobic media within 45 min. The (Cu-PES) oxidative radicals generated in aerobic media were not the only intermediates leading to bacterial inactivation. Bacterial inactivation also proceeds in the dark under anaerobic conditions. For this reason, the oxidative radicals were leading to bacterial reduction were unambiguously identified by appropriate scavengers. X-ray photoelectron spectroscopy (XPS) provided evidence for redox catalysis going within the time required by Cu-PES to induce bacterial reduction. Furthermore, the Cu-ions in the ppb range leached from the Cu-PES during bacterial reduction were monitored by inductively coupled plasma mass spectrometry (ICP-MS) and the Cu found were below the limit allowed for mammalian cells. By infrared spectroscopy (ATR-FTIR) the bacteria stretching shifts of the predominant lipo-polysaccharide (LPS) associated-(CH2) groups were monitored. The overstretching of these groups determined the time necessary for bond scission/bacterial inactivation.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs