Nonlinear optical response of D-π-A chromophores based on benzoxazin: quantum modification of π‑spacer

Q2 Chemistry Current Chemistry Letters Pub Date : 2022-01-01 DOI:10.5267/j.ccl.2022.3.001
A. Azaid, T. Abram, R. Kacimi, M. Raftani, Y. Khaddam, D. Nebbach, A. Sbai, T. Lakhlifi, M. Bouachrine
{"title":"Nonlinear optical response of D-π-A chromophores based on benzoxazin: quantum modification of π‑spacer","authors":"A. Azaid, T. Abram, R. Kacimi, M. Raftani, Y. Khaddam, D. Nebbach, A. Sbai, T. Lakhlifi, M. Bouachrine","doi":"10.5267/j.ccl.2022.3.001","DOIUrl":null,"url":null,"abstract":"In this research article, four chromophores based on benzoxazine as the electron donor and tricyanovinyl dihydrofuran (TCF) as the electron acceptor have been designed to investigate the nonlinear optical (NLO) response. The geometric and electronic structures, absorption spectra, NBO analysis, and nonlinear optical response have been calculated by employing density functional theory (DFT) at PBEPBE/6-31G (d,p). The new design of chromophores has been proposed by the structural modification of π-spacers/conjugated systems. The DFT and TD−DFT computations at CAM−B3LYP/6−31G (d,p) have been performed to shed light on the influences of structural modification on the NLO properties. The absorption wavelength in different organic solvents, polarizability (α), and hyperpolarizability (β) are all determined. A strong NLO response indicates that this family of organic compounds with a D-π-A structure exhibits large first hyperpolarizability βtot values, these values are much greater than ones of urea. This theoretical model may be used to design other chromophores for usage in electro-optics.","PeriodicalId":10942,"journal":{"name":"Current Chemistry Letters","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Chemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.ccl.2022.3.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2

Abstract

In this research article, four chromophores based on benzoxazine as the electron donor and tricyanovinyl dihydrofuran (TCF) as the electron acceptor have been designed to investigate the nonlinear optical (NLO) response. The geometric and electronic structures, absorption spectra, NBO analysis, and nonlinear optical response have been calculated by employing density functional theory (DFT) at PBEPBE/6-31G (d,p). The new design of chromophores has been proposed by the structural modification of π-spacers/conjugated systems. The DFT and TD−DFT computations at CAM−B3LYP/6−31G (d,p) have been performed to shed light on the influences of structural modification on the NLO properties. The absorption wavelength in different organic solvents, polarizability (α), and hyperpolarizability (β) are all determined. A strong NLO response indicates that this family of organic compounds with a D-π-A structure exhibits large first hyperpolarizability βtot values, these values are much greater than ones of urea. This theoretical model may be used to design other chromophores for usage in electro-optics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于苯并恶嗪的D-π-A发色团的非线性光学响应:π间隔剂的量子修饰
本文设计了以苯并恶嗪为电子给体,三氰乙烯基二氢呋喃(TCF)为电子受体的四种发色团,研究了非线性光学响应。利用密度泛函理论(DFT)计算了PBEPBE/6-31G的几何和电子结构、吸收光谱、NBO分析和非线性光学响应(d,p)。通过对π-间隔/共轭体系进行结构修饰,提出了一种新的发色团设计方法。在CAM - B3LYP/6 - 31G (d,p)上进行了DFT和TD - DFT计算,揭示了结构修饰对NLO性能的影响。测定了其在不同有机溶剂中的吸收波长、极化率(α)和超极化率(β)。较强的NLO响应表明,这类具有D-π-A结构的有机化合物具有较大的第一超极化率βtot值,远远大于尿素。该理论模型可用于设计其他用于电光学的发色团。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Chemistry Letters
Current Chemistry Letters Chemistry-Chemistry (all)
CiteScore
4.90
自引率
0.00%
发文量
27
审稿时长
20 weeks
期刊介绍: The "Current Chemistry Letters" is a peer-reviewed international journal which aims to publish all the current and outstanding research articles, reviews and letters in chemistry including analytical chemistry, green chemistry, inorganic chemistry, organic chemistry, physical chemistry, etc. This journal is dedicated to serve all academic and industrial researchers and scientists who are expert in all major advances in chemistry research. The journal aims to provide the most complete and reliable source of information on current developments in these fields. The emphasis will be on publishing quality articles rapidly and openly available to researchers worldwide. Please note readers are free to read, download, copy, distribute, print, search, or link to the full texts of articles published on this journal. Current Chemistry Letters is an open access journal, which provides instant access to the full text of research papers without any need for a subscription to the journal where the papers are published. Therefore, anyone has the opportunity to copy, use, redistribute, transmit/display the work publicly and to distribute derivative works, in any sort of digital form for any responsible purpose, subject to appropriate attribution of authorship. Authors who publish their articles may also maintain the copyright of their articles.
期刊最新文献
Thermal and morphological studies of chitosan and agar-agar blends In vitro biological assessment of 1,3,4-oxadiazole sandwiched by azinane and acetamides supported by molecular docking and BSA binding studies Effect of different concentrations and combinations of some plant growth regulators on Punica granatum anther culture Design, synthesis and characterization of some new pyrazol-pyrimidine derivatives and evaluation of their biological activities Quantification of Alectinib in spiked rabbit plasma using liquid chromatography- electro spray ionization-tandem mass spectrophotometry: An application to pharmacokinetic study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1