{"title":"Tribocorrosion Performance of Cr/CrN Hybrid Layer as a Coating for Machine Components Used in a Chloride Ions Environment","authors":"M. Kowalski, A. Stachowiak","doi":"10.3390/COATINGS11020242","DOIUrl":null,"url":null,"abstract":"The aim of the article was to identify the effect of material hardness on the tribocorrosion process by comparing two material solutions. The analysis concerned the assessment of the process intensity and the identification of the mechanisms responsible for material loss. Possible mechanisms of tribocorrosion common for materials of high hardness were determined. Two classic material solutions (based on AISI 1045 steel) ensuring high hardness of the subsurface layers were tested: nitriding with an additional oxidation and impregnation process, and Physical Vapour Deposition (PVD) coating. In order to better identify the impact of hardness on the tribocorrosion process in each individual test, the pressures in the contact zone were increased. The tribocorrosion tests were carried out in 3.5% NaCl with free corrosion potential (OCP) for the ball-on-plate system. The results of the tribocorrosion tests presented in the article indicate that the synergy effect of friction and corrosion can be generated by the same mechanisms of material removal in both the material solutions tested. The intensity of these mechanisms is determined by material hardness. The likely mechanism of generating the synergy effect may be related to the formation of local pits along the friction path. The corrosion processes that are initiated by the cracking of the hard surface layer create local cavities, which most probably intensify frictional wear in successive time intervals. The area around the cavities facilitates plastic deformation, the initiation of cracking of the cyclically deformed layer and the tearing of larger pieces of material (especially at higher unit pressures in the frictional contact zone).","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"1 1","pages":"242"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11020242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The aim of the article was to identify the effect of material hardness on the tribocorrosion process by comparing two material solutions. The analysis concerned the assessment of the process intensity and the identification of the mechanisms responsible for material loss. Possible mechanisms of tribocorrosion common for materials of high hardness were determined. Two classic material solutions (based on AISI 1045 steel) ensuring high hardness of the subsurface layers were tested: nitriding with an additional oxidation and impregnation process, and Physical Vapour Deposition (PVD) coating. In order to better identify the impact of hardness on the tribocorrosion process in each individual test, the pressures in the contact zone were increased. The tribocorrosion tests were carried out in 3.5% NaCl with free corrosion potential (OCP) for the ball-on-plate system. The results of the tribocorrosion tests presented in the article indicate that the synergy effect of friction and corrosion can be generated by the same mechanisms of material removal in both the material solutions tested. The intensity of these mechanisms is determined by material hardness. The likely mechanism of generating the synergy effect may be related to the formation of local pits along the friction path. The corrosion processes that are initiated by the cracking of the hard surface layer create local cavities, which most probably intensify frictional wear in successive time intervals. The area around the cavities facilitates plastic deformation, the initiation of cracking of the cyclically deformed layer and the tearing of larger pieces of material (especially at higher unit pressures in the frictional contact zone).