Fabian Blume, Yu-Chang Liu, Daniel Thiel, Jan Deska
{"title":"Chemoenzymatic Total Synthesis of (+)- & (−)-cis-Osmundalactone","authors":"Fabian Blume, Yu-Chang Liu, Daniel Thiel, Jan Deska","doi":"10.1016/j.molcatb.2016.11.010","DOIUrl":null,"url":null,"abstract":"<div><p>Both optical antipodes of the <em>cis</em>-isomers of osmundalactone, a hydroxypyranone natural product and core structure of the angiopterlactones, have been synthesized from acetylfuran in only three steps through a redox cascade utilizing oxidoreductases and transition metal catalysis in a concerted fashion. The key step in this fully catalytic strategy is the enzyme-mediated Achmatowicz reaction via selective furan oxygenation to furnish the pyran core structure.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"134 ","pages":"Pages 280-284"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.11.010","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716302235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 18
Abstract
Both optical antipodes of the cis-isomers of osmundalactone, a hydroxypyranone natural product and core structure of the angiopterlactones, have been synthesized from acetylfuran in only three steps through a redox cascade utilizing oxidoreductases and transition metal catalysis in a concerted fashion. The key step in this fully catalytic strategy is the enzyme-mediated Achmatowicz reaction via selective furan oxygenation to furnish the pyran core structure.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.