Da Yan, Guimu Guo, Md Mashiur Rahman Chowdhury, M. Tamer Özsu, Wei-Shinn Ku, John C.S. Lui
{"title":"G-thinker: A Distributed Framework for Mining Subgraphs in a Big Graph","authors":"Da Yan, Guimu Guo, Md Mashiur Rahman Chowdhury, M. Tamer Özsu, Wei-Shinn Ku, John C.S. Lui","doi":"10.1109/ICDE48307.2020.00122","DOIUrl":null,"url":null,"abstract":"Mining from a big graph those subgraphs that satisfy certain conditions is useful in many applications such as community detection and subgraph matching. These problems have a high time complexity, but existing systems to scale them are all IO-bound in execution. We propose the first truly CPU-bound distributed framework called G-thinker that adopts a user-friendly subgraph-centric vertex-pulling API for writing distributed subgraph mining algorithms. To utilize all CPU cores of a cluster, G-thinker features (1) a highly-concurrent vertex cache for parallel task access and (2) a lightweight task scheduling approach that ensures high task throughput. These designs well overlap communication with computation to minimize the CPU idle time. Extensive experiments demonstrate that G-thinker achieves orders of magnitude speedup compared even with the fastest existing subgraph-centric system, and it scales well to much larger and denser real network data. G-thinker is open-sourced at http://bit.ly/gthinker with detailed documentation.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"22 1","pages":"1369-1380"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
Mining from a big graph those subgraphs that satisfy certain conditions is useful in many applications such as community detection and subgraph matching. These problems have a high time complexity, but existing systems to scale them are all IO-bound in execution. We propose the first truly CPU-bound distributed framework called G-thinker that adopts a user-friendly subgraph-centric vertex-pulling API for writing distributed subgraph mining algorithms. To utilize all CPU cores of a cluster, G-thinker features (1) a highly-concurrent vertex cache for parallel task access and (2) a lightweight task scheduling approach that ensures high task throughput. These designs well overlap communication with computation to minimize the CPU idle time. Extensive experiments demonstrate that G-thinker achieves orders of magnitude speedup compared even with the fastest existing subgraph-centric system, and it scales well to much larger and denser real network data. G-thinker is open-sourced at http://bit.ly/gthinker with detailed documentation.