Approximate near neighbors for general symmetric norms

Alexandr Andoni, Huy L. Nguyen, Aleksandar Nikolov, Ilya P. Razenshteyn, Erik Waingarten
{"title":"Approximate near neighbors for general symmetric norms","authors":"Alexandr Andoni, Huy L. Nguyen, Aleksandar Nikolov, Ilya P. Razenshteyn, Erik Waingarten","doi":"10.1145/3055399.3055418","DOIUrl":null,"url":null,"abstract":"We show that every symmetric normed space admits an efficient nearest neighbor search data structure with doubly-logarithmic approximation. Specifically, for every n, d = no(1), and every d-dimensional symmetric norm ||·||, there exists a data structure for (loglogn)-approximate nearest neighbor search over ||·|| for n-point datasets achieving no(1) query time and n1+o(1) space. The main technical ingredient of the algorithm is a low-distortion embedding of a symmetric norm into a low-dimensional iterated product of top-k norms. We also show that our techniques cannot be extended to general norms.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

We show that every symmetric normed space admits an efficient nearest neighbor search data structure with doubly-logarithmic approximation. Specifically, for every n, d = no(1), and every d-dimensional symmetric norm ||·||, there exists a data structure for (loglogn)-approximate nearest neighbor search over ||·|| for n-point datasets achieving no(1) query time and n1+o(1) space. The main technical ingredient of the algorithm is a low-distortion embedding of a symmetric norm into a low-dimensional iterated product of top-k norms. We also show that our techniques cannot be extended to general norms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一般对称模的近似近邻
我们证明了每一个对称赋范空间允许一种有效的双对数逼近的最近邻搜索数据结构。具体来说,对于每一个n, d = no(1),以及每一个d维对称范数||·||,存在一个对n点数据集实现不(1)查询时间和n1+o(1)空间的(loglogn)-近似近邻搜索在||·||上的数据结构。该算法的主要技术成分是将对称范数低失真地嵌入到上k个范数的低维迭代积中。我们还表明,我们的技术不能扩展到一般规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online service with delay A simpler and faster strongly polynomial algorithm for generalized flow maximization Low rank approximation with entrywise l1-norm error Fast convergence of learning in games (invited talk) Surviving in directed graphs: a quasi-polynomial-time polylogarithmic approximation for two-connected directed Steiner tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1