Nanou Tiéba Tuo, Georges Stéphane Dembélé, Soro Doh, Fandia Konate, B. Konaté, C. Kodjo, N. Ziao
{"title":"Theoretical Study of the Chemical Reactivity of a Series of 2, 3-Dihydro-1H-Perimidine","authors":"Nanou Tiéba Tuo, Georges Stéphane Dembélé, Soro Doh, Fandia Konate, B. Konaté, C. Kodjo, N. Ziao","doi":"10.9734/irjpac/2022/v23i130451","DOIUrl":null,"url":null,"abstract":"This reactivity study was performed on seven molecules of a 2,3-dihydro-1H-perimidine series using density functional theory at the B3LYP / 6-311 G (d, p) level. Calculation of the dipole moment showed that compound 4 is more soluble in aqueous medium. The study of frontier molecular orbitals, in particular the energy gap (ΔE), electronegativity (c), chemical hardness (η) and the electrophilic index (ω) has provided a better overview molecular properties. Thus, the compound 5 with the highest energy gap between the boundary orbitals is the most stable and the least reactive. Analysis of local descriptors and the electrostatic potential map identified nitrogen atoms N26 and N28 as the preferred sites of electrophilic attack and the carbon atom C26 as the preferred site of nucleophilic attack.","PeriodicalId":14371,"journal":{"name":"International Research Journal of Pure and Applied Chemistry","volume":"51 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Pure and Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/irjpac/2022/v23i130451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This reactivity study was performed on seven molecules of a 2,3-dihydro-1H-perimidine series using density functional theory at the B3LYP / 6-311 G (d, p) level. Calculation of the dipole moment showed that compound 4 is more soluble in aqueous medium. The study of frontier molecular orbitals, in particular the energy gap (ΔE), electronegativity (c), chemical hardness (η) and the electrophilic index (ω) has provided a better overview molecular properties. Thus, the compound 5 with the highest energy gap between the boundary orbitals is the most stable and the least reactive. Analysis of local descriptors and the electrostatic potential map identified nitrogen atoms N26 and N28 as the preferred sites of electrophilic attack and the carbon atom C26 as the preferred site of nucleophilic attack.