Semi parametric Estimators for Quantile Model via LASSO and SCAD with Missing Data

Aws Adnan Al-Tai, Qutaiba N. Nayef Al-Kazaz
{"title":"Semi parametric Estimators for Quantile Model via LASSO and SCAD with Missing Data","authors":"Aws Adnan Al-Tai, Qutaiba N. Nayef Al-Kazaz","doi":"10.33095/jeas.v28i133.2351","DOIUrl":null,"url":null,"abstract":"In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method","PeriodicalId":53940,"journal":{"name":"Eskisehir Osmangazi Universitesi IIBF Dergisi-Eskisehir Osmangazi University Journal of Economics and Administrative Sciences","volume":"53 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eskisehir Osmangazi Universitesi IIBF Dergisi-Eskisehir Osmangazi University Journal of Economics and Administrative Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33095/jeas.v28i133.2351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LASSO和SCAD的缺失数据分位数模型半参数估计
在本研究中,我们对LASSO和SCAD两种处理部分分位数回归模型的特殊方法进行了比较。(Nadaraya & Watson Kernel)对非参数部分进行估计,并采用经验法则法对平滑带宽(h)进行估计。惩罚法在估计回归系数时是有效的,但在使用均值插值法估计缺失数据后,基于均方误差准则(MSE)的SCAD方法是最好的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
20.00%
发文量
15
期刊最新文献
The Impact of Organizational Innovation Climate on Sustainable Competitive Advantage- Empirical Study Industries Based on the Petrochemical Industry in Iraq-Plastics Industry as a Model The Influence of Customer Knowledge Management on Sustainable Promotion Impacting Digital Competence on Entrepreneurial Alertness: An Analytical Research at the Central Bank of Iraq The Impact of Developmental Leadership on Adaptive Performance- Analytical Research General Directorates of Education in Baghdad province
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1