A GROUP REGULARISATION APPROACH FOR CONSTRUCTING GENERALISED AGE-PERIOD-COHORT MORTALITY PROJECTION MODELS

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-02-23 DOI:10.1017/asb.2021.29
Dilan SriDaran, M. Sherris, Andrés M. Villegas, Jonathan Ziveyi
{"title":"A GROUP REGULARISATION APPROACH FOR CONSTRUCTING GENERALISED AGE-PERIOD-COHORT MORTALITY PROJECTION MODELS","authors":"Dilan SriDaran, M. Sherris, Andrés M. Villegas, Jonathan Ziveyi","doi":"10.1017/asb.2021.29","DOIUrl":null,"url":null,"abstract":"Abstract Given the rapid reductions in human mortality observed over recent decades and the uncertainty associated with their future evolution, there have been a large number of mortality projection models proposed by actuaries and demographers in recent years. Many of these, however, suffer from being overly complex, thereby producing spurious forecasts, particularly over long horizons and for small, noisy data sets. In this paper, we exploit statistical learning tools, namely group regularisation and cross-validation, to provide a robust framework to construct discrete-time mortality models by automatically selecting the most appropriate functions to best describe and forecast particular data sets. Most importantly, this approach produces bespoke models using a trade-off between complexity (to draw as much insight as possible from limited data sets) and parsimony (to prevent over-fitting to noise), with this trade-off designed to have specific regard to the forecasting horizon of interest. This is illustrated using both empirical data from the Human Mortality Database and simulated data, using code that has been made available within a user-friendly open-source R package StMoMo.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2021.29","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Given the rapid reductions in human mortality observed over recent decades and the uncertainty associated with their future evolution, there have been a large number of mortality projection models proposed by actuaries and demographers in recent years. Many of these, however, suffer from being overly complex, thereby producing spurious forecasts, particularly over long horizons and for small, noisy data sets. In this paper, we exploit statistical learning tools, namely group regularisation and cross-validation, to provide a robust framework to construct discrete-time mortality models by automatically selecting the most appropriate functions to best describe and forecast particular data sets. Most importantly, this approach produces bespoke models using a trade-off between complexity (to draw as much insight as possible from limited data sets) and parsimony (to prevent over-fitting to noise), with this trade-off designed to have specific regard to the forecasting horizon of interest. This is illustrated using both empirical data from the Human Mortality Database and simulated data, using code that has been made available within a user-friendly open-source R package StMoMo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建广义年龄-时期-队列死亡率预测模型的群体正则化方法
鉴于近几十年来观察到的人类死亡率的快速下降及其未来演变的不确定性,近年来精算师和人口学家提出了大量的死亡率预测模型。然而,其中许多预测都过于复杂,从而产生了虚假的预测,特别是在长期和小而嘈杂的数据集方面。在本文中,我们利用统计学习工具,即群体正则化和交叉验证,通过自动选择最合适的函数来最好地描述和预测特定数据集,为构建离散时间死亡率模型提供了一个强大的框架。最重要的是,这种方法在复杂性(从有限的数据集中获取尽可能多的洞察力)和简约性(防止过度拟合噪声)之间进行权衡,产生定制模型,这种权衡被设计为对感兴趣的预测范围有特定的考虑。这是使用人类死亡率数据库的经验数据和模拟数据来说明的,使用了用户友好的开源R包StMoMo中提供的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1