{"title":"Dispersive interactions between standard and Dirac materials and the role of dimensionality","authors":"D. Le, P. Rodriguez-Lopez, L. M. Woods","doi":"10.1088/2515-7639/ac6d80","DOIUrl":null,"url":null,"abstract":"The van der Waals (vdW) interaction plays a prominent role between neutral objects at separations where short ranged chemical forces are negligible. This type of dispersive coupling is determined by the interplay between geometry and response properties of the materials making up the objects. Here, we investigate the vdW interaction between 1D, 2D, and 3D standard and Dirac materials within the Random Phase Approximation, which takes into account collective excitations originating from the electronic Coulomb potential. A comprehensive understanding of characteristic functionalities and scaling laws are obtained for systems with parabolic energy dispersion (standard materials) and crossing linear bands (Dirac materials). By comparing the quantum mechanical and thermal limits the onset of thermal fluctuations in the vdW interaction is discussed showing that thermal effects are significantly pronounced at smaller scales in reduced dimensions.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"22 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/ac6d80","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2
Abstract
The van der Waals (vdW) interaction plays a prominent role between neutral objects at separations where short ranged chemical forces are negligible. This type of dispersive coupling is determined by the interplay between geometry and response properties of the materials making up the objects. Here, we investigate the vdW interaction between 1D, 2D, and 3D standard and Dirac materials within the Random Phase Approximation, which takes into account collective excitations originating from the electronic Coulomb potential. A comprehensive understanding of characteristic functionalities and scaling laws are obtained for systems with parabolic energy dispersion (standard materials) and crossing linear bands (Dirac materials). By comparing the quantum mechanical and thermal limits the onset of thermal fluctuations in the vdW interaction is discussed showing that thermal effects are significantly pronounced at smaller scales in reduced dimensions.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.