Coupling proofs are probabilistic product programs

G. Barthe, B. Grégoire, Justin Hsu, Pierre-Yves Strub
{"title":"Coupling proofs are probabilistic product programs","authors":"G. Barthe, B. Grégoire, Justin Hsu, Pierre-Yves Strub","doi":"10.1145/3009837.3009896","DOIUrl":null,"url":null,"abstract":"Couplings are a powerful mathematical tool for reasoning about pairs of probabilistic processes. Recent developments in formal verification identify a close connection between couplings and pRHL, a relational program logic motivated by applications to provable security, enabling formal construction of couplings from the probability theory literature. However, existing work using pRHL merely shows existence of a coupling and does not give a way to prove quantitative properties about the coupling, needed to reason about mixing and convergence of probabilistic processes. Furthermore, pRHL is inherently incomplete, and is not able to capture some advanced forms of couplings such as shift couplings. We address both problems as follows. First, we define an extension of pRHL, called x-pRHL, which explicitly constructs the coupling in a pRHL derivation in the form of a probabilistic product program that simulates two correlated runs of the original program. Existing verification tools for probabilistic programs can then be directly applied to the probabilistic product to prove quantitative properties of the coupling. Second, we equip x-pRHL with a new rule for while loops, where reasoning can freely mix synchronized and unsynchronized loop iterations. Our proof rule can capture examples of shift couplings, and the logic is relatively complete for deterministic programs. We show soundness of x-PRHL and use it to analyze two classes of examples. First, we verify rapid mixing using different tools from coupling: standard coupling, shift coupling, and path coupling, a compositional principle for combining local couplings into a global coupling. Second, we verify (approximate) equivalence between a source and an optimized program for several instances of loop optimizations from the literature.","PeriodicalId":20657,"journal":{"name":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009837.3009896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Couplings are a powerful mathematical tool for reasoning about pairs of probabilistic processes. Recent developments in formal verification identify a close connection between couplings and pRHL, a relational program logic motivated by applications to provable security, enabling formal construction of couplings from the probability theory literature. However, existing work using pRHL merely shows existence of a coupling and does not give a way to prove quantitative properties about the coupling, needed to reason about mixing and convergence of probabilistic processes. Furthermore, pRHL is inherently incomplete, and is not able to capture some advanced forms of couplings such as shift couplings. We address both problems as follows. First, we define an extension of pRHL, called x-pRHL, which explicitly constructs the coupling in a pRHL derivation in the form of a probabilistic product program that simulates two correlated runs of the original program. Existing verification tools for probabilistic programs can then be directly applied to the probabilistic product to prove quantitative properties of the coupling. Second, we equip x-pRHL with a new rule for while loops, where reasoning can freely mix synchronized and unsynchronized loop iterations. Our proof rule can capture examples of shift couplings, and the logic is relatively complete for deterministic programs. We show soundness of x-PRHL and use it to analyze two classes of examples. First, we verify rapid mixing using different tools from coupling: standard coupling, shift coupling, and path coupling, a compositional principle for combining local couplings into a global coupling. Second, we verify (approximate) equivalence between a source and an optimized program for several instances of loop optimizations from the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
耦合证明是概率积程序
耦合是对概率过程对进行推理的一个强大的数学工具。形式验证的最新发展确定了耦合和pRHL之间的密切联系,pRHL是一种由可证明安全性应用程序驱动的关系程序逻辑,可以从概率论文献中正式构建耦合。然而,现有的使用pRHL的工作仅仅表明了耦合的存在,并没有给出一种方法来证明耦合的定量性质,这需要对概率过程的混合和收敛进行推理。此外,pRHL本质上是不完整的,不能捕获一些高级形式的耦合,如移位耦合。我们以以下方式解决这两个问题。首先,我们定义了pRHL的扩展,称为x-pRHL,它以模拟原始程序的两个相关运行的概率积程序的形式显式地构建了pRHL派生中的耦合。现有的概率程序验证工具可以直接应用于概率乘积,以证明耦合的定量性质。其次,我们为x-pRHL提供了一个新的while循环规则,其中推理可以自由地混合同步和非同步循环迭代。我们的证明规则可以捕获移位耦合的例子,并且对于确定性程序的逻辑是相对完整的。我们证明了x-PRHL的合理性,并用它来分析两类例子。首先,我们使用不同的耦合工具验证快速混合:标准耦合、位移耦合和路径耦合,这是一种将局部耦合组合成全局耦合的组合原则。其次,我们从文献中验证了几个循环优化实例的源和优化程序之间的(近似)等效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gradual refinement types A semantic account of metric preservation A posteriori environment analysis with Pushdown Delta CFA Type systems as macros Complexity verification using guided theorem enumeration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1