Modeling the dynamic behavior of laminated steels using a Fourier-based approach

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, APPLIED European Physical Journal-applied Physics Pub Date : 2020-10-01 DOI:10.1051/epjap/2020200020
R. Zeinali, D. Krop, E. Lomonova
{"title":"Modeling the dynamic behavior of laminated steels using a Fourier-based approach","authors":"R. Zeinali, D. Krop, E. Lomonova","doi":"10.1051/epjap/2020200020","DOIUrl":null,"url":null,"abstract":"A new magneto-dynamic model is proposed to approximate the dynamic hysteresis effect in laminated steels considering the static hysteresis, eddy-current field, and excess field. An accurate congruency-based hysteresis model is used to predict the static hysteresis field. The eddy-current is determined from the 1D diffusion equation and the well-known Bertotti empirical equation is utilized to model the excess-field effect. The dynamic lamination model obtained from coupling three field components is solved using a Fourier-based approach. In this approach, the flux density across the lamination thickness is approximated by a cosine-based Fourier series. The coefficients of the Fourier series are determined by solving a system of nonlinear equations through an iterative procedure. Owing to the employed congruency-based static hysteresis model, the proposed magneto-dynamic model offers high accuracy for arbitrary magnetization regimes. To validate the model accuracy, the model results are compared with sinusoidal and multi-harmonic measurements. The comparison shows that the proposed model predicts the dynamic hysteresis phenomenon in laminated steels with a relative energy error of less than 7%.","PeriodicalId":12228,"journal":{"name":"European Physical Journal-applied Physics","volume":"11 1","pages":"10905"},"PeriodicalIF":0.9000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Physical Journal-applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/epjap/2020200020","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

A new magneto-dynamic model is proposed to approximate the dynamic hysteresis effect in laminated steels considering the static hysteresis, eddy-current field, and excess field. An accurate congruency-based hysteresis model is used to predict the static hysteresis field. The eddy-current is determined from the 1D diffusion equation and the well-known Bertotti empirical equation is utilized to model the excess-field effect. The dynamic lamination model obtained from coupling three field components is solved using a Fourier-based approach. In this approach, the flux density across the lamination thickness is approximated by a cosine-based Fourier series. The coefficients of the Fourier series are determined by solving a system of nonlinear equations through an iterative procedure. Owing to the employed congruency-based static hysteresis model, the proposed magneto-dynamic model offers high accuracy for arbitrary magnetization regimes. To validate the model accuracy, the model results are compared with sinusoidal and multi-harmonic measurements. The comparison shows that the proposed model predicts the dynamic hysteresis phenomenon in laminated steels with a relative energy error of less than 7%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用基于傅里叶的方法模拟层合钢的动态行为
提出了一种考虑静磁滞回效应、涡流场和过剩场的层合钢动态磁滞回效应的新磁动力学模型。采用精确的基于同余的磁滞模型来预测静磁滞场。涡流由一维扩散方程确定,并利用著名的Bertotti经验方程来模拟过场效应。采用基于傅里叶的方法求解了由三场分量耦合得到的动态层合模型。在这种方法中,通过基于余弦的傅立叶级数来近似层压厚度上的通量密度。傅里叶级数的系数是通过迭代过程求解非线性方程组来确定的。由于采用了基于同余性的静态磁滞模型,所提出的磁动力学模型对任意磁化条件具有较高的精度。为了验证模型的准确性,将模型结果与正弦和多谐测量结果进行了比较。对比表明,该模型对层合钢动态迟滞现象的预测相对能量误差小于7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
84
审稿时长
1.9 months
期刊介绍: EPJ AP an international journal devoted to the promotion of the recent progresses in all fields of applied physics. The articles published in EPJ AP span the whole spectrum of applied physics research.
期刊最新文献
Novel KOH treated Li-CuO as anode for the Application of Lithium-Ion Batteries Interpretation of temperature measurements by the Boltzmann plot method on spatially integrated plasma oxygen spectral lines Calculation of structural, electronic, magnetic and optical properties of C3N monolayer substituted with magnesium Photoluminescence from metal clusters formed in the pores of zeolite by pulsed laser ablation in a liquid phase Characterisation of the waveplate associated to layers in interferential mirrors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1