Minshun Zhang, Jun-Chen Fan, A. Sharma, Ashima Kukkar
{"title":"Data mining applications in university information management system development","authors":"Minshun Zhang, Jun-Chen Fan, A. Sharma, Ashima Kukkar","doi":"10.1515/jisys-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract Nowadays, the modern management is promoted to resolve the issue of unreliable information transmission and to provide work efficiency. The basic aim of the modern management is to be more effective in the role of the school to train talents and serve the society. This article focuses on the application of data mining (DM) in the development of information management system (IMS) in universities and colleges. DM provides powerful approaches for a variety of educational areas. Due to the large amount of student information that can be used to design valuable patterns relevant to student learning behavior, research in the field of education is continuously expanding. Educational data mining can be used by educational institutions to assess student performance, assisting the institution in recognizing the student’s accomplishments. In DM, classification is a well-known technique that has been regularly used to determine student achievement. In this study, the process of DM and the application research of association rules is introduced in the development of IMS in universities and colleges. The results show that the curriculum covers the whole field and the minimum transaction support count be 2, minconf = 70%. The results also suggested that students who choose one course also tend to choose the other course. The application of DM theory in university information will greatly upsurge the data analysis capability of administrators and improve the management level.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 14
Abstract
Abstract Nowadays, the modern management is promoted to resolve the issue of unreliable information transmission and to provide work efficiency. The basic aim of the modern management is to be more effective in the role of the school to train talents and serve the society. This article focuses on the application of data mining (DM) in the development of information management system (IMS) in universities and colleges. DM provides powerful approaches for a variety of educational areas. Due to the large amount of student information that can be used to design valuable patterns relevant to student learning behavior, research in the field of education is continuously expanding. Educational data mining can be used by educational institutions to assess student performance, assisting the institution in recognizing the student’s accomplishments. In DM, classification is a well-known technique that has been regularly used to determine student achievement. In this study, the process of DM and the application research of association rules is introduced in the development of IMS in universities and colleges. The results show that the curriculum covers the whole field and the minimum transaction support count be 2, minconf = 70%. The results also suggested that students who choose one course also tend to choose the other course. The application of DM theory in university information will greatly upsurge the data analysis capability of administrators and improve the management level.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.