{"title":"Spider structures: records of fluid venting from methane hydrates on the Congo continental slope","authors":"V. Casenave, P. Imbert","doi":"10.1051/BSGF/2017189","DOIUrl":null,"url":null,"abstract":"Fluid seepage features on the upper continental slope offshore Congo are investigated using multi-disciplinary datasets acquired during several campaigns at sea carried out over the last 15 years. This datasets includes multibeam bathymetry, seismic data, seafloor videos, seafloor samples and chemical analyses of both carbonate samples and of the water column. Combined use of these datasets allows the identification of two distinctive associations of pockmark-like seabed venting structures, located in water depths of 600–700 m and directly above a buried structural high containing known hydrocarbon reservoirs. These two features are called spiders due to the association of large sub-circular depressions (the body) with smaller elongate depressions (the legs). Seismic reflection data show that these two structures correspond to amplitude anomalies located ca. 60–100 ms below seabed. The burial of these anomalies is consistent with the base of the methane hydrate stability domain, which leads to interpret them as patches of hydrate-related bottom-simulating reflection (BSR). The morphology and seismic character of the two structures clearly contrasts with those of the regional background (Morphotype A). The spider structures are composed of two seafloor morphotypes: Morphotype B and Morphotype C. Morphotype B makes flat-bottomed depressions associated with the presence of large bacterial mats without evidence of carbonates. Morphotype C is made of elongated depressions associated with the presence of carbonate pavements and a prolific chemosynthetic benthic life. On that basis of these observations combined with geochemical analyses, the spider structures are interpreted to be linked with methane leakage. Methane leakage within the spider structures varies from one morphotype to another, with a higher activity within the seafloor of Morphotype C; and a lower activity in the seafloor of Morphotype B, which is interpreted to correspond to a domain of relict fluid leakage. This change of the seepage activity is due to deeper changes in gas (or methane) migration corresponding to the progressive upslope migration of fluids. This phenomenon is due to the local formation of gas hydrates that form a barrier allowing the trapping of free gas below in the particular context of the wedge of hydrates.","PeriodicalId":55978,"journal":{"name":"Bulletin de la Societe Geologique de France","volume":"28 1","pages":"27"},"PeriodicalIF":2.6000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin de la Societe Geologique de France","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1051/BSGF/2017189","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Fluid seepage features on the upper continental slope offshore Congo are investigated using multi-disciplinary datasets acquired during several campaigns at sea carried out over the last 15 years. This datasets includes multibeam bathymetry, seismic data, seafloor videos, seafloor samples and chemical analyses of both carbonate samples and of the water column. Combined use of these datasets allows the identification of two distinctive associations of pockmark-like seabed venting structures, located in water depths of 600–700 m and directly above a buried structural high containing known hydrocarbon reservoirs. These two features are called spiders due to the association of large sub-circular depressions (the body) with smaller elongate depressions (the legs). Seismic reflection data show that these two structures correspond to amplitude anomalies located ca. 60–100 ms below seabed. The burial of these anomalies is consistent with the base of the methane hydrate stability domain, which leads to interpret them as patches of hydrate-related bottom-simulating reflection (BSR). The morphology and seismic character of the two structures clearly contrasts with those of the regional background (Morphotype A). The spider structures are composed of two seafloor morphotypes: Morphotype B and Morphotype C. Morphotype B makes flat-bottomed depressions associated with the presence of large bacterial mats without evidence of carbonates. Morphotype C is made of elongated depressions associated with the presence of carbonate pavements and a prolific chemosynthetic benthic life. On that basis of these observations combined with geochemical analyses, the spider structures are interpreted to be linked with methane leakage. Methane leakage within the spider structures varies from one morphotype to another, with a higher activity within the seafloor of Morphotype C; and a lower activity in the seafloor of Morphotype B, which is interpreted to correspond to a domain of relict fluid leakage. This change of the seepage activity is due to deeper changes in gas (or methane) migration corresponding to the progressive upslope migration of fluids. This phenomenon is due to the local formation of gas hydrates that form a barrier allowing the trapping of free gas below in the particular context of the wedge of hydrates.
期刊介绍:
BSGF - Earth Sciences Bulletin publie plusieurs types de contributions :
1. des articles originaux, couvrant tous les champs disciplinaires des Géosciences, à vocation fondamentale mais également à vocation plus appliquée (risques, ressources);
2. des articles de synthèse, faisant le point sur les avancées dans un domaine spécifique des Géosciences, qu''elles soient méthodologiques ou régionales ;
3. des monographies sur la géologie d’une région donnée, assorties d’informations supplémentaires, cartes, coupes, logs, profils sismiques … publiées en ligne en annexe de l’article ;
4. des articles courts de type « express letter » ;
5. des livrets-guides d’excursion (qui suivront le même processus d’examen éditorial que les articles plus classiques) ;
6. des comptes rendus de campagnes à la mer ;
7. des articles de données géodésiques, géophysiques ou géochimiques, pouvant devenir des articles de référence pouvant conduire à des interprétations ultérieures.
BSGF - Earth Sciences Bulletin constitue également un forum pour les discussions entre spécialistes des Sciences de la Terre, de type comment-reply ou autre. Tous les articles publiés, quelle que soit leur forme, seront accessibles sans frais (articles en Open Access) sur le site de la SGF et sur celui de Geosciences World dans la mesure où les auteurs se seront acquittés d’une contribution de (Article Processing Charges – APC) de 300€ pour les membres de la SGF et 500€ pour les non-membres.