The anti-Jaynes-Cummings model is solvable : quantum Rabi model in rotating and counter-rotating frames ; following the experiments

Joseph Omolo
{"title":"The anti-Jaynes-Cummings model is solvable : quantum Rabi model in rotating and counter-rotating frames ; following the experiments","authors":"Joseph Omolo","doi":"10.21203/RS.3.RS-379917/V1","DOIUrl":null,"url":null,"abstract":"\n This article is a response to the continued assumption, cited even in reports and reviews of recent experimental breakthroughs and advances in theoretical methods, that the antiJaynes-Cummings (AJC)interaction is an intractable energy non-conserving component of the quantum Rabi model (QRM). We present three key features of QRM dynamics : (a) the AJC interaction component has a conserved excitation number operator and is exactly solvable (b) QRM dynamical space consists of a rotating frame (RF) dominated by an exactly solved Jaynes-Cummings (JC) interaction specied by a conserved JC excitation number operator which generates the U(1) symmetry of RF and a correlated counter-rotating frame (CRF) dominated by an exactly solved antiJaynes-Cummings (AJC) interaction specied by a conserved AJC excitation number operator which generates the U(1) symmetry of CRF (c) for QRM dynamical evolution in RF, the initial atom-eld state je0i is an eigenstate of the effective AJC Hamiltonian HAJC, while the effective JC Hamiltonian HJC drives this initial state je0i into a time evolving entangled state, and, in a corresponding process for QRM dynamical evolution in CRF, the initial atom-eld state jg0i is an eigenstate of the effective JC Hamiltonian, while the effective AJC Hamiltonian drives this initial state jg0i into a time evolving entangled state, thus addressing one of the long-standing challenges of theoretical and experimental QRM dynamics; consistent generalizations of the initial states je0i , jg0i to corresponding n 0 entangled eigenstates j+en i , j 􀀀g ni of the AJC in RF and JC in CRF, respectively, provides general dynamical evolution of QRM characterized by collapses and revivals in the time evolution of the atomic, eld mode, JC and AJC excitation numbers for large initial photon numbers ; the JC and AJC excitation numbers are conserved in the respective frames RF, CRF, but each evolves with time in the alternate frame.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-379917/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This article is a response to the continued assumption, cited even in reports and reviews of recent experimental breakthroughs and advances in theoretical methods, that the antiJaynes-Cummings (AJC)interaction is an intractable energy non-conserving component of the quantum Rabi model (QRM). We present three key features of QRM dynamics : (a) the AJC interaction component has a conserved excitation number operator and is exactly solvable (b) QRM dynamical space consists of a rotating frame (RF) dominated by an exactly solved Jaynes-Cummings (JC) interaction specied by a conserved JC excitation number operator which generates the U(1) symmetry of RF and a correlated counter-rotating frame (CRF) dominated by an exactly solved antiJaynes-Cummings (AJC) interaction specied by a conserved AJC excitation number operator which generates the U(1) symmetry of CRF (c) for QRM dynamical evolution in RF, the initial atom-eld state je0i is an eigenstate of the effective AJC Hamiltonian HAJC, while the effective JC Hamiltonian HJC drives this initial state je0i into a time evolving entangled state, and, in a corresponding process for QRM dynamical evolution in CRF, the initial atom-eld state jg0i is an eigenstate of the effective JC Hamiltonian, while the effective AJC Hamiltonian drives this initial state jg0i into a time evolving entangled state, thus addressing one of the long-standing challenges of theoretical and experimental QRM dynamics; consistent generalizations of the initial states je0i , jg0i to corresponding n 0 entangled eigenstates j+en i , j 􀀀g ni of the AJC in RF and JC in CRF, respectively, provides general dynamical evolution of QRM characterized by collapses and revivals in the time evolution of the atomic, eld mode, JC and AJC excitation numbers for large initial photon numbers ; the JC and AJC excitation numbers are conserved in the respective frames RF, CRF, but each evolves with time in the alternate frame.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反jaynes - cummings模型是可解的:在旋转和反旋转坐标系中的量子Rabi模型;在实验之后
这篇文章是对持续假设的回应,甚至在最近的实验突破和理论方法进展的报告和评论中也被引用,即反杰恩斯-卡明斯(AJC)相互作用是量子拉比模型(QRM)中难以处理的能量非守恒组成部分。我们提出了QRM动力学的三个关键特征:(a) AJC相互作用分量具有一个守恒激励数算子,并且是精确可解的;(b) QRM动力学空间由一个以产生RF的U(1)对称性的守恒JC激励数算子指定的精确解Jaynes-Cummings (JC)相互作用为主导的旋转坐标系(RF)和一个以产生U(1)对称性的守恒AJC激励数算子指定的精确解反Jaynes-Cummings (AJC)相互作用为主导的相关逆旋转坐标系(CRF)组成RF中QRM动力学演化的U(1)对称性,初始原子场态je0i是有效AJC哈密顿量HAJC的特征态,而有效JC哈密顿量HJC将该初始态je0i驱动为时间演化的纠缠态,在相应的CRF中QRM动力学演化过程中,初始原子场态jg0i是有效JC哈密顿量的特征态。而有效的AJC哈密顿量将这个初始状态jg0i驱动到一个时间演化的纠缠态,从而解决了理论和实验QRM动力学的长期挑战之一;将初始态je0i, jg0i分别推广到RF中AJC和CRF中JC对应的n个纠缠本征态j+en i, j􀀀g ni,提供了QRM在原子、场模式、初始光子数较大的JC和AJC激发数的时间演化中以坍缩和恢复为特征的一般动力学演化;JC和AJC激励数在各自的帧RF、CRF中保持不变,但在交替帧中随时间而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Quantum Machine Learning A Wave Nature-Based Interpretation of The Nonclassical Feature of Photon Bunching On A Beam Splitter The Future of Quantum Theory: A Way Out of the Impasse Partial Measurements of Quantum Systems Emergence of the Classical from within the Quantum Universe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1