A Neural Embedding-based Recommender System to Get the Most out of EV Recharge Times

Q3 Engineering AUS Pub Date : 2023-03-29 DOI:10.1109/ESARS-ITEC57127.2023.10114855
Luigi Libero Lucio Starace, Luca Bianco, S. Di Martino
{"title":"A Neural Embedding-based Recommender System to Get the Most out of EV Recharge Times","authors":"Luigi Libero Lucio Starace, Luca Bianco, S. Di Martino","doi":"10.1109/ESARS-ITEC57127.2023.10114855","DOIUrl":null,"url":null,"abstract":"Long recharge times are one of the main challenges in providing a seamless experience for users of electric vehicles (EVs) during long trips. Recommender systems play a crucial role in optimizing the recharge process and in providing a better overall experience, as witnessed by a number of solutions presented in the literature. Most of these works, however, focused on minimizing waiting times by suggesting where and when to recharge the EV, leveraging for example historical demand patterns and/or real-time information. In this work, we tackle the problem from the different - and complementary - perspective of suggesting relevant and tailored activities users can perform to make the most out of their EV recharge times. To this end, we present a novel recommender system that leverages open data from the OpenStreetMap project and uses a specifically-trained neural embedding model to capture the semantic relationships between user preferences and nearby available activities and Points of Interest (Pois). The recommender system, whose implementation we make freely available for interested researchers and practitioners, provides personalized recommendations to users based on their preferences and past behaviour. We assessed the effectiveness of the proposal by conducting a study involving real users with different backgrounds, and the results showed that the proposal is effective in providing relevant and personalized recommendations to users, during recharge times.","PeriodicalId":38493,"journal":{"name":"AUS","volume":"37 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESARS-ITEC57127.2023.10114855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Long recharge times are one of the main challenges in providing a seamless experience for users of electric vehicles (EVs) during long trips. Recommender systems play a crucial role in optimizing the recharge process and in providing a better overall experience, as witnessed by a number of solutions presented in the literature. Most of these works, however, focused on minimizing waiting times by suggesting where and when to recharge the EV, leveraging for example historical demand patterns and/or real-time information. In this work, we tackle the problem from the different - and complementary - perspective of suggesting relevant and tailored activities users can perform to make the most out of their EV recharge times. To this end, we present a novel recommender system that leverages open data from the OpenStreetMap project and uses a specifically-trained neural embedding model to capture the semantic relationships between user preferences and nearby available activities and Points of Interest (Pois). The recommender system, whose implementation we make freely available for interested researchers and practitioners, provides personalized recommendations to users based on their preferences and past behaviour. We assessed the effectiveness of the proposal by conducting a study involving real users with different backgrounds, and the results showed that the proposal is effective in providing relevant and personalized recommendations to users, during recharge times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经嵌入的电动汽车充电时间推荐系统
在长途旅行中,为电动汽车用户提供无缝体验,充电时间长是主要挑战之一。推荐系统在优化充电过程和提供更好的整体体验方面发挥着至关重要的作用,正如文献中提出的许多解决方案所证明的那样。然而,这些工作大多集中在通过建议何时何地给电动汽车充电,利用历史需求模式和/或实时信息,从而最大限度地减少等待时间。在这项工作中,我们从不同和互补的角度来解决这个问题,建议用户可以执行相关和定制的活动,以最大限度地利用他们的电动汽车充电时间。为此,我们提出了一种新的推荐系统,该系统利用来自OpenStreetMap项目的开放数据,并使用经过专门训练的神经嵌入模型来捕获用户偏好与附近可用活动和兴趣点(Pois)之间的语义关系。推荐系统的实现将免费提供给感兴趣的研究人员和从业人员,它可以根据用户的偏好和过去的行为向用户提供个性化的推荐。我们通过对不同背景的真实用户进行研究来评估该提案的有效性,结果表明该提案能够有效地在充值期间为用户提供相关和个性化的推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AUS
AUS Engineering-Architecture
CiteScore
0.40
自引率
0.00%
发文量
14
期刊介绍: Revista AUS es una publicación académica de corriente principal perteneciente a la comunidad de investigadores de la arquitectura y el urbanismo sostenibles, en el ámbito de las culturas locales y globales. La revista es semestral, cuenta con comité editorial y sus artículos son revisados por pares en el sistema de doble ciego. Periodicidad semestral.
期刊最新文献
Envejecer en la playa. La emergente migración de personas mayores hacia el Litoral Central de Chile (1987 – 2017) Análisis comparativo en la rehabilitación de envolvente térmica de cerramientos educacionales con criterio ambiental Decisiones de diseño y construcción que influyen en la durabilidad del bambú en edificaciones Hábitat anfibio de la selva amazónica. El caso de la zona rural con tipologías de asentamiento y la vivienda en el barrio Victoria Regia Aeropuerto y arquitectura moderna, una tensión entre global y local: el caso de Punta Arenas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1