Human Body Posture Recognition Approaches

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY Pub Date : 2022-06-13 DOI:10.14500/aro.10930
M. Ali, A. Hussain, A. Sadiq
{"title":"Human Body Posture Recognition Approaches","authors":"M. Ali, A. Hussain, A. Sadiq","doi":"10.14500/aro.10930","DOIUrl":null,"url":null,"abstract":"Human body posture recognition has become the focus of many researchers in recent years. Recognition of body posture is used in various applications, including surveillance, security, and health monitoring. However, these systems that determine the body’s posture through video clips, images, or data from sensors have many challenges when used in the real world. This paper provides an important review of how most essential ‎ hardware technologies are ‎used in posture recognition systems‎. These systems capture and collect datasets through ‎accelerometer sensors or computer vision. In addition, this paper presents a comparison ‎study with state-of-the-art in terms of accuracy. We also present the advantages and ‎limitations of each system and suggest promising future ideas that can increase the ‎efficiency of the existing posture recognition system. Finally, the most common datasets ‎applied in these systems are described in detail. It aims to be a resource to help choose one of the methods in recognizing the posture of the human body and the techniques that suit each method. It analyzes more than 80 papers between 2015 and 2020","PeriodicalId":8398,"journal":{"name":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.10930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Human body posture recognition has become the focus of many researchers in recent years. Recognition of body posture is used in various applications, including surveillance, security, and health monitoring. However, these systems that determine the body’s posture through video clips, images, or data from sensors have many challenges when used in the real world. This paper provides an important review of how most essential ‎ hardware technologies are ‎used in posture recognition systems‎. These systems capture and collect datasets through ‎accelerometer sensors or computer vision. In addition, this paper presents a comparison ‎study with state-of-the-art in terms of accuracy. We also present the advantages and ‎limitations of each system and suggest promising future ideas that can increase the ‎efficiency of the existing posture recognition system. Finally, the most common datasets ‎applied in these systems are described in detail. It aims to be a resource to help choose one of the methods in recognizing the posture of the human body and the techniques that suit each method. It analyzes more than 80 papers between 2015 and 2020
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人体姿势识别方法
人体姿势识别是近年来众多研究人员关注的焦点。身体姿势的识别用于各种应用,包括监视、安全和健康监测。然而,这些通过视频剪辑、图像或传感器数据来确定身体姿势的系统在现实世界中使用时面临许多挑战。本文提供了一个重要的回顾如何最基本的硬件技术是在姿势识别系统中使用。这些系统通过加速度计传感器或计算机视觉捕捉和收集数据集。此外,本文还在准确性方面与目前的先进技术进行了比较研究。我们还介绍了每个系统的优点和局限性,并提出了有希望的未来想法,可以提高现有姿势识别系统的效率。最后,详细描述了这些系统中最常用的数据集。它旨在成为一种资源,帮助选择一种方法来识别人体的姿势和适合每种方法的技术。它分析了2015年至2020年间的80多篇论文
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY MULTIDISCIPLINARY SCIENCES-
自引率
33.30%
发文量
33
审稿时长
16 weeks
期刊最新文献
Encryption of Color Images with a New Framework Microstrip Passive Components for Energy Harvesting and 5G Applications Optimizing Emotional Insight through Unimodal and Multimodal Long Short-term Memory Models A Review on Adverse Drug Reaction Detection Techniques Deep Learning-Based Optical Music Recognition for Semantic Representation of Non-overlap and Overlap Music Notes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1