Scene Classification Using Pyramid Histogram of Multi-Scale Block Local Binary Pattern

Dipankar Das
{"title":"Scene Classification Using Pyramid Histogram of Multi-Scale Block Local Binary Pattern","authors":"Dipankar Das","doi":"10.5121/IJCSA.2014.4402","DOIUrl":null,"url":null,"abstract":"Pyramid Histogram of Multi-scale Block Local Binary Pattern (PH-MBLBP) descriptor for recognizing scene categories, is presented in this paper. We show that scene categorization, especially for indoor and outdoor environments, requires its visual descriptor to process properties that are different from other vision domains (e.g., SIFT descriptor used for object categorization). Our proposed PH-MBLBP satisfies these properties and suits the scene categorization task. Since the proposed PH-MBLBP mainly encodes micro- and macro-structures of image patterns, thus, it provides relatively more complete image descriptor than the basic LBP operator. Moreover, our PH-MBLBP descriptor is more powerful texture descriptor than the conventional operator and it can also be calculated extremely fast. Our experiments demonstrate that PH-MBLBP outperforms the other descriptor such as SIFT.","PeriodicalId":39465,"journal":{"name":"International Journal of Computer Science and Applications","volume":"41 1","pages":"15-25"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJCSA.2014.4402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5

Abstract

Pyramid Histogram of Multi-scale Block Local Binary Pattern (PH-MBLBP) descriptor for recognizing scene categories, is presented in this paper. We show that scene categorization, especially for indoor and outdoor environments, requires its visual descriptor to process properties that are different from other vision domains (e.g., SIFT descriptor used for object categorization). Our proposed PH-MBLBP satisfies these properties and suits the scene categorization task. Since the proposed PH-MBLBP mainly encodes micro- and macro-structures of image patterns, thus, it provides relatively more complete image descriptor than the basic LBP operator. Moreover, our PH-MBLBP descriptor is more powerful texture descriptor than the conventional operator and it can also be calculated extremely fast. Our experiments demonstrate that PH-MBLBP outperforms the other descriptor such as SIFT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度块局部二值模式的金字塔直方图场景分类
提出了一种用于场景分类识别的多尺度块局部二值模式(PH-MBLBP)描述符金字塔直方图。我们表明,场景分类,特别是室内和室外环境,需要其视觉描述符来处理与其他视觉域不同的属性(例如,用于对象分类的SIFT描述符)。我们提出的PH-MBLBP满足这些特性,适合场景分类任务。由于所提出的PH-MBLBP主要对图像模式的微观和宏观结构进行编码,因此,它比基本LBP算子提供了相对更完整的图像描述符。此外,我们的PH-MBLBP描述符是比传统算子更强大的纹理描述符,它的计算速度也非常快。我们的实验表明,PH-MBLBP优于其他描述符,如SIFT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Science and Applications
International Journal of Computer Science and Applications Computer Science-Computer Science Applications
自引率
0.00%
发文量
0
期刊介绍: IJCSA is an international forum for scientists and engineers involved in computer science and its applications to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the IJCSA are selected through rigorous peer review to ensure originality, timeliness, relevance, and readability.
期刊最新文献
Prediction of Mental Health Instability using Machine Learning and Deep Learning Algorithms Prediction of Personality Traits and Suitable Job through an Intelligent Interview Agent using Machine Learning MultiScale Object Detection in Remote Sensing Images using Deep Learning People Counting and Tracking System in Real-Time Using Deep Learning Techniques Covid-19 Chest X-ray Images: Lung Segmentation and Diagnosis using Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1