Preparation and electrical property of carbon foam grounding material by pyrolysis of cyanate esters modified with phosphorus contained Schiff-base

Mian Fan, H. He, Bo Tan, Xianghan Wang, Xuefang Tong, Min Dai
{"title":"Preparation and electrical property of carbon foam grounding material by pyrolysis of cyanate esters modified with phosphorus contained Schiff-base","authors":"Mian Fan, H. He, Bo Tan, Xianghan Wang, Xuefang Tong, Min Dai","doi":"10.1109/ICEMPE51623.2021.9509146","DOIUrl":null,"url":null,"abstract":"Compared with metallic grounding material, flexible graphite grounding material is widely applied in grounding field of power system, due to its resistance of corrosion and high impulse current. Novel phosphorus contained Schiff-base is synthesized by 9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide and furfuryl amine, salicylaldehyde, and is incorporating with CE to prepare a carbon foam by property of the resin blend under nitrogen atmosphere. The curing behavior and pyrolysis mechanism of the resin are investigated by DMA, TGA, FTIR and Raman spectrum. The results indicated that incorporating of PSF leads to incomplete combustion during the pyrolysis processing and results in more residues formed. As the consequence, the carbon foam exhibits good electrical conductivity, due to the formed residues consist of graphite structure.","PeriodicalId":7083,"journal":{"name":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","volume":"41 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMPE51623.2021.9509146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compared with metallic grounding material, flexible graphite grounding material is widely applied in grounding field of power system, due to its resistance of corrosion and high impulse current. Novel phosphorus contained Schiff-base is synthesized by 9, 10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide and furfuryl amine, salicylaldehyde, and is incorporating with CE to prepare a carbon foam by property of the resin blend under nitrogen atmosphere. The curing behavior and pyrolysis mechanism of the resin are investigated by DMA, TGA, FTIR and Raman spectrum. The results indicated that incorporating of PSF leads to incomplete combustion during the pyrolysis processing and results in more residues formed. As the consequence, the carbon foam exhibits good electrical conductivity, due to the formed residues consist of graphite structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含磷希夫碱改性氰酸酯热解制备碳泡沫接地材料及其电性能研究
与金属接地材料相比,柔性石墨接地材料具有耐腐蚀、冲击电流大等优点,在电力系统接地领域得到了广泛的应用。以9,10 -二氢-9-氧杂-10-磷菲10-氧化物和糠胺、水杨醛为原料合成了新型含磷希夫碱,并利用该树脂共混物在氮气气氛下的性能与CE结合制备了碳泡沫材料。采用DMA、TGA、FTIR和拉曼光谱对树脂的固化行为和热解机理进行了研究。结果表明,PSF的掺入导致热解过程中燃烧不完全,残留物增多。结果表明,泡沫碳具有良好的导电性,这是由于其形成的残馀物由石墨结构组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Stress Analysis of Epoxy Resin Encapsulated Solid State Transformer's Cracking Caused by Temperature Shock Study on the Arc Characteristics of Insulator Creeping Discharge under High Velocity Air Application of an improved ultraviolet spectrophotometry technology for the determination of antioxidants in natural ester liquids Noise analysis and device improvement of composite probe for space charge measuring based on PIPWP method Research on high voltage capacitor partial discharge detection with portable oscillating wave circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1