Pressure controlled trimerization for switching of anomalous Hall effect in triangular antiferromagnet Mn3Sn

C. Singh, Vikram Singh, Gyandeep Pradhan, V. Srihari, H. Poswal, R. Nath, A. Nandy, A. Nayak
{"title":"Pressure controlled trimerization for switching of anomalous Hall effect in triangular antiferromagnet \nMn3Sn","authors":"C. Singh, Vikram Singh, Gyandeep Pradhan, V. Srihari, H. Poswal, R. Nath, A. Nandy, A. Nayak","doi":"10.1103/PhysRevResearch.2.043366","DOIUrl":null,"url":null,"abstract":"Here, we present a detailed theoretical and experimental study on the pressure induced switching of anomalous Hall effect (AHE) in the triangular antiferromagnetic (AFM) compound Mn$_3$Sn. Our theoretical model suggests pressure driven significant splitting of the in-plane Mn bond lengths $i.e.$ an effective trimerization, which in turn stabilizes a helical AFM ground state by modifying the inter-plane exchange parameters in the system. We experimentally demonstrate that the AHE in Mn$_3$Sn reduces from 5$\\mu\\Omega$ cm at ambient pressure to zero at an applied pressure of about 1.5 GPa. Furthermore, our pressure dependent magnetization study reveals that the conventional triangular AFM ground state of Mn$_3$Sn systematically transforms into the helical AFM phase where the symmetry does not support a non-vanishing Berry curvature required for the realization of a finite AHE. The pressure dependent x-ray diffraction (XRD) study rules out any role of structural phase transition in the observed phenomenon. In addition, the temperature dependent in-plane lattice parameter at ambient pressure is found to deviate from the monotonic behavior when the system enters into the helical AFM phase, thereby, supporting the proposed impact of trimerization in controlling the AHE. We believe that the present study makes an important contribution towards understanding the stabilization mechanism of different magnetic ground states in Mn$_3$Sn and related materials for their potential applications pertaining to AHE switching.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevResearch.2.043366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Here, we present a detailed theoretical and experimental study on the pressure induced switching of anomalous Hall effect (AHE) in the triangular antiferromagnetic (AFM) compound Mn$_3$Sn. Our theoretical model suggests pressure driven significant splitting of the in-plane Mn bond lengths $i.e.$ an effective trimerization, which in turn stabilizes a helical AFM ground state by modifying the inter-plane exchange parameters in the system. We experimentally demonstrate that the AHE in Mn$_3$Sn reduces from 5$\mu\Omega$ cm at ambient pressure to zero at an applied pressure of about 1.5 GPa. Furthermore, our pressure dependent magnetization study reveals that the conventional triangular AFM ground state of Mn$_3$Sn systematically transforms into the helical AFM phase where the symmetry does not support a non-vanishing Berry curvature required for the realization of a finite AHE. The pressure dependent x-ray diffraction (XRD) study rules out any role of structural phase transition in the observed phenomenon. In addition, the temperature dependent in-plane lattice parameter at ambient pressure is found to deviate from the monotonic behavior when the system enters into the helical AFM phase, thereby, supporting the proposed impact of trimerization in controlling the AHE. We believe that the present study makes an important contribution towards understanding the stabilization mechanism of different magnetic ground states in Mn$_3$Sn and related materials for their potential applications pertaining to AHE switching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三角形反铁磁体Mn3Sn中异常霍尔效应开关的压力控制三聚化
本文对三角形反铁磁(AFM)化合物Mn $_3$ Sn中异常霍尔效应(AHE)的压力诱导开关进行了详细的理论和实验研究。我们的理论模型表明,压力驱动平面内Mn键长度的显著分裂$i.e.$是一种有效的三聚化,这反过来通过改变系统中的平面间交换参数来稳定螺旋AFM基态。我们通过实验证明,Mn $_3$ Sn中的AHE在环境压力下从5 $\mu\Omega$ cm减小到约1.5 GPa的施加压力下为零。此外,我们的压力相关磁化研究表明,Mn $_3$ Sn的传统三角形AFM基态系统地转变为螺旋AFM相,其中对称性不支持实现有限AHE所需的不消失的Berry曲率。压力相关的x射线衍射(XRD)研究排除了结构相变在观察到的现象中的任何作用。此外,在环境压力下,当系统进入螺旋AFM相时,温度相关的面内晶格参数偏离单调行为,从而支持三聚化对控制AHE的影响。我们认为,本研究对理解Mn $_3$ Sn及其相关材料中不同磁基态的稳定机制及其在AHE开关中的潜在应用做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A pathway towards high throughput Quantum Monte Carlo simulations for alloys: A case study of two-dimensional (2D) GaSₓSe₁₋ₓ Data analytics accelerates the experimental discovery of new thermoelectric materials with extremely high figure of merit Thermal laser evaporation of elements from across the periodic table Perpendicular magnetic anisotropy in ultra-thin Cu2Sb-type (Mn–Cr)AlGe films fabricated onto thermally oxidized silicon substrates The Mesoscale Crystallinity of Nacreous Pearls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1